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SECTION 1

IN'IRODUCTION AND SUMMARY

Use of a large deployable space structure to satisfy the growth demands of space systems is

contingent upon reducing the associated risks that pervade many related technical disciplines,

including structural dynamics, control dynamics thermal control, materials, and mechanization.

NASA has recognized this issue and has sponsored significant research aimed at developing the

needed large space structures technologies.

The overall objective of this program, which uses the products of these research efforts, is to

develop and verify deployable truss advanced technology applicable to future large space

structures, with primary emphasis on large high-performance antenna reflectors.

Specific program objectives include:

• Develop a detailed plan for a comprehensive analysis, ground test, and flight test program that

will provide practical usable insight into large deployable truss structures technology issues. The

plan addresses validation of analytical methods, the degree to which ground testing adequately

simulates flight testing, and the in-space testing requirements for large deployable antenna design

validation.

• Integrate into the plan deployable truss structure development issues and technology

requirements to support future NASA and DOD missions.

• Develop a preliminary design of a deployable truss reflector/beam structure for use as a

technology demonstration test article. Preliminary design and planning is based on a test program

using an existing General Dynamics 5-meter aperture deployable tetrahedral truss reflector and a

new 15-meter deployable tetrahedral truss antenna design.

To address critical deployment, dynamics, controls and interface issues for large antenna

structures, the test articles include a deployable truss beam element that represents a typical antenna

support structure. An overview of the ground test and flight experiment programs is shown in

Figure I-1.

The technical effort on this program was conducted over a total period of 13 months (May 1986

thru June 1987). The detailed program plan was developed during the f'n'st nine months.

Preliminary design and analysis of the experiment was initiated at the end of the sixth month and

was completed at the end of the technical effort.
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_ GROUND'IEST .

FLIGHTTEST

Figure 1-1. Ground Test and Flight Experiment Overview

The program was managed by J.E. Dyer of General Dynamics Space Systems Division. Major

contributions were made to the program by Dr. A. L. Hale, Structural Dynamics and Controls; R.

H. Riccken, Structural and Mechanisms Design; R. L. Pleasant, Thermal Analysis; G. S. Davis,

Flight Experiment and Shuttle Integration; R. E. Bailey, Ground Test Planning; J. M. Youngs,

Cost Analysis; S. C. Maid, Avionics and Instrumentation; E. T. Lipscomb, R. F. Systems. R.

Quartcraro of SPARTA, Inc,,provided major inputs to the study in the areas or requirements,

surface measurement and control.
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SECTION2
PROGRAMPLAN

Theprimary output of this study is a detailed program plan that includes the definition of a

comprehensive analysis, ground test, and flight test program that provides insight into large

deployable truss structures technology issues. The plan addresses analytical methods validation,

ground testing approaches, and in-space testing requirements. The plan is divided into nine

elements:

• Performance and Design Requirements identifies deployable truss structure technology

requirements for future space systems.

• Design and Development includes evaluation analyses, experiment options definition and

experiment design.

• Analysis Plan addresses the analysis component of the integrated analysis, ground test and flight

test technology verification program.

• Test Plan defines both the ground and flight test elements.

• Payload Integration covers the requirements for integrating the flight test program with the STS.

• Post-flight Evaluation provides a plan to evaluate and correlate test and analysis data.

• Program Schedule defines the overall program master schedule.

• Facility Requirements identifies facilities required for the development, manufacture, test, and

analysis efforts.

• Cost Analysis develops a cost model for the total verification program including hardware,

fabrication and testing.

Each of these nine elements of the program plan is discussed in the following sections.

2.1 PERFORMANCE AND DESIGN REQUIREMENTS

The program objective, planning for the development and verification of deployable truss structure

technology for future space systems, suggests that performance and design requirements must be

based upon the structural needs of anticipated large space systems. Accordingly, the approach

outlined in Figure 2-1 was used to determine deployable truss requirements. These requirements

and technology issues were established by reviewing the "NASA Space Systems Technology

Model" (NSSTM) (Ref. 1); the "Military Space Systems Technology Plan," (MSSTP) (Ref. 2);

NASA/LaRC briefings on the "Control of Flexible Spacecraft" program; documentation on the Air

Force Weapons Laboratory's "Large Optical Structures" program; and private communications

with NASA and DOD personnel. Data from these sources are divided into four classes:

• NASA and commercial antennas

• NASA optical systems
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• Militaryspace-basedradarantennas

• Militarylaseroptics

The fh'stclassisof most interest,servingtoestablishbaselinetechnologyissues,becauseof its

primaryrelevancetoNASA researchobjectivesand compatibilitywithdeployablestructure

capabilities. The other classes are examined to determine if technology developed for antenna truss

structures would be applicable, or ff optical or radar issues could be addressed on an antenna test

article. The final output of this process is a set of preliminary, needs-driven technology

development issues.

DETERMINE
DEPLOYABLE

TRUSS
REQUIREMENTS

O

NSSTM
MSSTM

COFS
LOS

DEFINE LSS
TECHNOLOGY
ISSUES

• NASA AND COMMERCIAL ANTENNAS
. NASA OPTICAL SYSTEMS

• MILITARY SBR ANTENNAS
• MILITARY LASER OPTICS

EVALUATE I ]

TECHNOLOGY
ISSUES

BASELINE TECH

ISSUES (FOR NASA
AND COMMERCIAL

ANTENNAS)

ESTABLISH PRELIMINARY'
TECHNOLOGY DEVELOPMENT
OBJECTIVES

ISSUES WHICH COULD
ADDRESSED WITH AN
ANTENNA TEST ARTICLE

' FINAL SELECTION BASED UPON TEST ARTICLE
COMPATIBILITY AND PROGRAM COST

Figure 2-1. Approach for Determining Deployable Truss Requirements and Technology
Development Issues

2.1.1 NASA AND COMMERCIAL ANTENNAS. A review of the NSSTM indicates that the

most demanding future NASA and commercial space antennas are characterized by:

• Benign disturbances (operation of attitude and velocity control components, solar array tracking,

and interaction with the earth orbital space environment)

• Accurate staring-mode body pointing towards earth and stellar targets

• Precision shape and alignment requirements.

A summary of future NASA missions and a representative commercial system, Intelsat IV, is

presented in Table 2-1. Wide ranges of sizes (5-300 meters) are projected, and operating
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Table2-1.Summaryof MissionRequirementsforFutureNASA andCommercialAntennas

NSSTM DIAMETER OPERATING START LAUNCH

DESIGNATION MISSION (M) FREQUENCY DATE DATE

C-3

C-4

C-7

L-5

LM-5

E-17

E-18

A-20 ORBITING VERY

OBSERVATORY

INTELSAT VII

MOBILE COMMUNICATIONS
PHASE I 5-7
PHASE II 20
PHASE III <_.55

ADVANCED COMMUNICATION 1 - 3,1 - 2

HIGH FREQUENCY DIRECT BROADCAST 65-100+

SEARCH FOR EXTRATERRESTRIAL LIFE 300

ADVANCED COMMERCIAL COMMUNICATIONS 160- 230

SOIL, SNOW MOISTURE AND PRECIPITATION 10
RESEARCH AND ASSESSMENT MISSION

FREE-FLYING IMAGING RADAR 10

LONG INTERFEROMETRY 1 5-20

UHF ONGOING 1989
UHF 1989 1993

UHF 1994 1998

20,30GHz ONGOING 1990

15-26GHz >_1990 ND

RF-RADAR 1988 ND

L-BAND ND ND

MICRO- 1990-2000 ND
WAVE

L-,C-,X-BAND 1990-2000 ND

X-BAND 1990-1995 ND

5 C-,K -BAND 1990 ND

wavelengths range from less than lcm (K-band) to 1 meter (UHF). For the most part, these are

standard reflector-type antennas that must maintain reflector surface figure and reflector/feed

alignment accurate to a fraction of one wavelength. The technology addressed in this program is

applicable to virtually all of these missions.

2.1.2 NASA OPTICAL SYSTEMS. Future NASA optical systems are summarized in Table 2-2.

These systems have two classes of structures: 1) primary reflector backup structures with

secondary mirror support (e.g., LDR); and, 2) booms to maintain precision alignment (e.g.,

Pinhole Occultor and Infrared Interferometer). Some are free-flyers with benign disturbances, and

others are subjected to potentially troublesome disturbances because they are Shuttle-attached

(Pinhole Occultor) or may contain mechanical cryo coolers (Infrared Interferometer). All are

required to point very accurately towards stellar or solar targets. Structural dimensions range from

20-100 meters, while operating wavelengths range from 0.41.tM (visible) to 1 millimeter (LWIR).

2.1.3 MILITARY SPACE-BASED RADAR. SBR studies have generally favored phased array

configurations over reflector-type antennas in order to effect agile, electronic beam steering. These
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Table2-2. Summary of Mission Requirements for NASA Optical Systems

NSSTM SIZE OPERATING START LAUNCH

DESIGNATION MISSION (M) FREQUENCY DATE DATE

A-23 LARGE DEPLOYABLE REFLECTOR 20M DIA 30/JM -1MM 1993 1997

A-29 100-M THINNED APERATURE 100M DIA VISIBLE >1995 ND
TELESCOPE

A-12 PINHOLE OCCULATOR FACILITY 32M BEAM 1988 1992

A-26 INFRARED INTERFEROMETER 100M BEAM IR >1995 ND

A-28 COHERENT OPTICAL SYSTEM OF 34M BEAM VISIBLE >1995 ND

MODULAR IMAGING COLLECTORS

designs avoid the need to point the structure accurately or to slew rapidly. However, the phased

array antenna surface must be kept planar to within a fraction of a wavelength. This.task is

complicated by heating from transmit/receive modules on the array. Furthermore, there is a desire

to perform rapid orbit change maneuvers in order to avoid threats, and the attendant antenna

surface errors must be suppressed quickly.

Typical SBR design characteristics and requirements are listed in Table 2-3. Operating wavelengths

typically range from 3-30 centimeters, and a typical fiat array antenna has an area on the order of

300 meters 2.

2.1.4 MILITARY LASER OPTICS. Large optical structures for laser weapon systems include

orbiting "relay" and "mission" mirrors to reflect laser light from ground-based sources and beam

expanders for space-based lasers that contain their own laser generators. These systems are

characterized by 10-meter-class optics, precise body pointing, and rapid retargeting maneuvers. All

are subjected to severe disturbances, with space-based laser device vibration the most intense.

Typical laser system requirements and characteristics are summarized in Table 2-4. Operating

wavelengths range from 0.01gtM(UV) to 3glVI(IR), and optical tolerances are fractions of a

wavelength.
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Table 2-3. SBR Antenna Mission Requirements

PARAMETER TYPICAL VALUES

MISSION

RADAR TYPE

SIZE

OPERATING FREQ.

POINTING MODE

DISTURBANCES

SURFACE ACCURACY

AIRCRAFT AND CRUISE MISSILE DETECTION AND TRACK;

STRATEGIC SURVEILLANCE; SHIP DETECTION AND IDENT-

IFICATION; MID-COURSE DISCRIMINATION

CORPORATE-FED PHASED ARRAY (ELECTRIC STEERING);

SPACE-FED LENS (ELECTRONIC STEERING);

REFLECTOR (BODY POINTING);

REFLECTOR AND PHASED FEED (BODY + ELECTRONIC)

ARRAY AREA • 300M2 (30M X IOM);

1-10.9+GHz

EARTH POINTING (ELECTRONIC STEERING)

THREAT AVOIDANCE MANEUVERS; T/R MODULE HEAT; ACS;

SOLAR ARRAYS; ENVIRONMENT

_./20- _/80

Table 2-4. Laser Weapon System Requirements

PARAMETERS TYPICAL VALUES

MISSION

OPTICAL SYSTEM TYPE

SIZE

OPERATING FREQUENCY

POINTING MODE

DISTURBANCES

SURFACE ACCURACY

STRATEGIC DEFENSE

ASAT
ASAT

GBL RELAY MIRROR: MONOCLE AND BIFOCAL

SBL BEAM EXPANDER

ASAT/DSAT = >_ 5M

STRATEGIC DEFENSE = >_ 10M

UV - IR

SLEW AND SETTLE; TRACK

ON-BOARD LASER; MIRROR COOLANT FLOW;ACS

/15 - ;k/40
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2.1.5 BASELINE REQUIREMENTS. Characteristicsand requirementsforthefourspace

structureclassesdiscussedabove arcsummarized inTable 2-5. The "Baseline"column lists

rangesofvaluesthatshouldbc addressedindevelopingand validatingdeployabletruss

technology.They arcselectedtobe theNASA and commercial antennaparametervalues,because

thatclassistheprimaryfocusof thistechnologydevelopment program. Comparing thecolumns

ofvalues,indicatesthattrussstructuresdevelopedfortheBaselineapplicationswillhave

characteristicssuitableforSBR antennas,but which arcnot applicabletoNASA and military

opticalstructures.However, thefollowingdiscussionwillshow thatallof thestructuralclasses

have some common technologyissues,and addressingthoseissueson an antennastructureshould

be of some helpindevelopingsolutionsforopticalstructures.

Table 2-5. Baseline Rcqttircmcnts

NASA AND NASA MILITARY
COMMERCIAL OPTICAL MILITARY SBR LASER

PARAMETERS ANTENNAS SYSTEMS ANTENNAS OPTICS BASELINE

SIZE 5-300M DIA. 20-100M >300M 2 > 5M DIA 5-300M

DIA (30M X 10M)

WAVELENGTH._, 1CM-- 1M + .4p, M-1MM 3 -30CM .01-3 p.M 1CM-1M

TOLERANCES
SURFACE _J20- _J40 _,/20 ;_/20- _./80 _/20 _,/40

DEFOCUS 2 _, 2 _, 2 _, 2 _. 2 _,
LATERAL 0.1_, 0.1_, 0.1_, 0.1 _. .1_,

DISTURBANCES ACS ACS MANEUVERS LASER ACS
SOLAR ARRAY SOLAR ARRAY T/R FLUIDS SOLAR ARRAY
ENVIRONMENT ENVIRONMENT MODULE ACS ENVIRONMENT

SHUTTLE HEAT ACS
SOLAR ARRAY
ENVIRONMENT

POINTING MODE EARTH STELLAR EARTH RETARGET EARTH
INERTIAL SOLAR TARGET TRACK INERTIAL

2.1.6 TECHNOLOGY ISSUES. Four categories of technology issues have been identified: I)

deployment, 2) shape accuracy, 3) pointing and alignment, and 4) articulation and maneuvers.

2.1.6. I Deployment. Deployment issues arc of greatest concern for very large NASA and

commercial antennas and some NASA optical systems. Antenna deployment is an issue because it

has not been demonsu'ated for 50-300 meter structures. Large optical systems operating at

relatively long wavelengths or containing long precision beams for alignment may employ
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deployable trusses that have not been demonstrated and must be very accurate. The specific

deployment technology needs applicable to both antenna and optical trusses are:

• Accurate computer simulation of deployment dynamics

• Ground test methods for very large structures

• Deployment motion control mechanisms and deployable optical trusses with zero-play joints

Military space-based radar structures do not pose as critical a problem because structures of this

smaller size have been deployed on the ground and in space. Military laser optical structures do not

share common deployment issues with NASA and commercial antennas, because their sizes are

more limited and shape/alignment tolerances are so critical that standard deployment techniques are

not applicable. It is likely that these structures will be partially or totally erectable.

2.1.6.2 Shape Accuracy. A standard measure of the technical challenge posed by a reflector

surface is diameter divided by the rms surface roughness requirement (D/e), where the surface

roughness requirement is a fraction of the operating wavelength. Figure 2-2 plots the values of

these parameters for the future NASA/commercial systems listed in Tables 2-1 and 2-2. The plot

also shows that the threshold of capability for a typical passive reflector, with a faceted mesh

reflector attached to a deployed backup structure, is between D/e = 104 and D/e = 10 5. Systems

such as C-3 and C-4 that are to the right of the "Passive Truss/Mesh Capability" line could be

accommodated by this passive reflector.

The capability of the truss/mesh configuration could be improved by adding active shape control.

If the control system were perfect, it could correct all errors except a 10-2 to 10-3 meter geometric

error resulting from approximating a continuous reflector surface by many flat facets. Thus, the

limit of control capability is indicated in Figure 2-2 by the vertical line labeled "Active Truss/Mesh

Potential." The plot shows that all the future NASA/commercial antennas considered here and the

space-based radar requirements could be accommodated by active shape control. Clearly, the

development of active reflector shape control would be beneficial, especially for very large

antennas.

At least these three shape accuracy issues should be addressed:

• Development of figure measurement sensors

• Development of actuators and algorithms for adjusting mesh surface shape

• Development of accurate analytical models for predicting thermal distortions

Addressing these topics specially for tress/mesh antenna reflectors will result in designs that will

not be directly applicabIe to optical and military radar systems. However, these same issues are

relevant to all four system classes, and there should be at least some technology transfer.

2-7



A

re
1.1.1
p-
ill

1000

100

10

0

A-29

=10 9
10 8

10 7
/ 10 6

10 5
10

..//
LM-5

• NASA/COMMERCIAL

ANTENNA REQUIREMENT

O NASA OPTICAL SYSTEM

REQUIREMENT

1
10 -8 10 "6 lO .4 10 -2 1

WAVELENGTH (M)

Figure 2-2. Assessment of Reflector Shape Accuracy Requirements

2.1.6.3 Pointing and Alignment. Alignment is considered along with pointing, because the major

impact of misalignment of an antenna feed or secondary mirror relative to its reflector is to

introduce pointing errors. Figure 2-3 addresses the body pointing issue only. It shows that

although pointing accuracy requirements become more severe as operating frequency and diameter

are increased (left side of Figure 2-3), the range of requirements is within the pointing control

state-of-the-art (right side).

Alignment issues, on the other hand, are similar to shape accuracy issues, in that requirements are

a fraction of the operating wavelength and errors tend to increase with size for uncontrolled

structures. For this reason, the specific shape accuracy issues mentioned above probably apply to

feed and secondary alignment, too.

Another closely related issue is control/stru_re interaction. As antenna diameter (D) increases and

operating wavelength (g) decreases, the bandwidth of the pointing control system tends to increase

to achieve more accurate pointing. Increasing antenna diameter lowers the fundamental structural

frequency (f), thereby increasing the likelihood of unstable control/structure interactions.
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Reference 3 indicates that unstable interactions tend to occur for values of D/f greater than

approximately 10 4. Using this criteria to evaluate the NASA antenna and optical systems (Figure

2-4), most of the antennas are in the "no interaction" region, and the largest antennas may

experience unstable interactive. All of the NASA optical systems are well within the "interaction"

region. Thus, the development of techniques to avoid interactions will be useful for the largest

antennas, and techniques developed for antennas should be applicable to optical systems. These

techniques will include developing accurate structural dynamic modeling and verification methods.

In smmnary, the pointing and alignment issues for future NASA/commercial antennas are:

• Feed or secondary mirror alignment

• Control/structure interaction

• Structural dynamic modeling and verification

All of these issues are applicable to both NASA and military optical systems, and alignment control

may be applicable to military space-based radar.

2.1.6.4 Articulation and Maneuvers. These two topics are combined into one issue because the

most stressing maneuver is the rapid retargeting of articulated optical telescopes. This issue is

applicable to military space-based lasers and, to a lesser extent, military radar. The class of

primary interest, NASA/commercial antennas, generally does not have stressing articulation or
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maneuver requirements. Therefore, this issue will not be included in the development plan.

2.1.6.5 Summary of Technology Issues. These technology issues are summarized in Table 2-6.

Area

Deployment

Table 2-6. Summary of Baseline Antenna Technology Issues

Technology Development Need

• Accurate computer simulation of deployment dynamics

• Ground test methods for very large structures

• Deployment motion control mechanisms

Shape Accuracy • Figure measurement sensors

• Actuators and sensors for adjusting mesh surface shape

• Accurate analytical models for predicting thermal distortions

Pointing and Alignment • Methods to suppress control/structure interactions

• Structural dynamic modeling and verification methods

2.1.7 SPACE TESTING. In-space testing is required to verify technology developed for large

deployable trusses that must maintain precise shape and alignment. This requirement results from

the inadequacy of current ground test methods in simulating the free-fall and thermal loading

environments experienced in space. Ground testing with gravity off-loading supports introduces
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nonoperational loads, constraints and disturbances that affect deployment dynamics, vibration

characteristics and shape/alignment accuracy. Furthermore, it is difficult to simulate realistic,

transient solar-thermal heating and shadowing in a thermal/vacuum chamber;, and the measurement

of thermally induced distortions is complicated by gravity loading. The space testing portion of the

program should verify new truss technology and validate ground test methods for future large

deployable antenna structures.

2.2 DESIGN AND DEVELOPMENT

Based on the design requirements and large deployable truss technology issues discussed in

Section 2.1, evaluation analysis, experiment options definition, and experiment designs were

developed. Previous work on the deployable geo-truss antenna reflector and the deployable truss

beam strongly influenced the experiment concept definition, which includes both 5-meter and 15-

meter diameter reflector/beam test articles.

2.2.1 STRUCTURAL DYNAMICS AND (_ONTROLS EVALUATION. This section describes

preliminary structural dynamics and controls analyses of candidate reflector-beam flight-experiment

configurations. The analyses have three main objectives: to determine inherent characteristics of

the candidate flight configurations, to define sequences of flight experiments that validate the

appropriate structural dynamics and controls technologies identified in Section 2.1, and to define

instrumentation requirements for the flight experiments.

Many previous studies have considered possible flight experiments for validating structural

dynamics and controls technologies of large, flexible space structures (e.g., Refs. 4-15, inclusive).

The present study is distinct in that it focuses on the technology issues appropriate for deployable

large mass-antenna structures. Since mass-antennas are inherently stiffer than other types of

antenna structures, structural dynamics and controls requirements for them are less demanding.

This is reinforced by the analyses reported below.

The individual analyses were designed to: 1) determine the dynamic behavior of 5- and 15-meter

reflector-beam flight experiment configurations; 2) evaluate the effects of Space Transportation

System (STS) primary RCS firings on loads in the flight structures; 3) locate candidate flight

instrumentation, both sensors and actuators, for on-orbit structural and control dynamics

experiments; 4) evaluate STS vernier RCS and internally mounted torque-wheels as disturbance

sources for on-orbit dynamics experiments; 5) evaluate candidate smactuml configurations for on-

orbit vibration control experiments; 6) evaluate candidate configurations for on-orbit articulation

and pointing control experiments; 7) determine candidate ground- and flight-test scenarios for
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structural dynamics and controls experiments; and, 8) compare the technology issues being

addressed herein with those addressed by NASA's proposed Control of Flexible Structures

(COFS) II program.

2.2.1.1 R_flector-Beam Confi_n'ations. The three structural configurations are (Figure 2-5):

• A 5-meter (radio frequency diameter) reflector mounted on a 6.5-meter beam

• A 5-meter reflector mounted on a 20-meter beam

• A 15-meter reflector mounted on a 20-meter beam.

The reflectors and beams are deployable truss structures. Each reflector is edge-mounted to one

end of the beam, and the opposite end of the beam is attached to the Space Transportation System's

(STS) cargo bay at a 45-degree angle to the bay. The reflectors face forward (towards the STS

crew compartment) and down (towards the cargo bay).

Actual designs for the reflectors, truss-beams, reflector-beam interface structures, and STS-beam

mount are discussed in Section 2.2.5. The beam lengths of 6.5 and 20 meters allow mounting an

RF feed near the STS for a focal length-to-diameter ratio of unity for the 5- and 15-meter

reflectors, respectively.

S-HETF_RREFLECTOR S-HETER REFLECTOR 15-_TER REFLECTOR

li.5-HETER flEAH 20-HEIER BEAH 20-_TtrR BF_.AH

/

Figure 2-5.

/

Both 5-and 15-Meter Antenna Structures Were Evaluated

2.2.1.2 Structural Hnite-Element-Model Assumptions. The reflectors are modeled as truss

structures using NASTRAN CROD elements with three translation degrees of freedom at each

node. The beams, on the other hand, are modeled with NASTRAN CBAR elements (axial,

transverse bending, and torsion elements) using effective axial, bending, and torsional mass and
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stiffnessproperties.There arc six degrees of freedom, three translations, and three rotations at

each beam node. Beam cross-sections are assumed symmetric.

Refleetor-bearn interface structures are also modeled using CBAR elements. The interface

structures have six degrees of freedom per beam-connection node and three degrees of freedom per

reflector-connection node. Element stiffnesses are commensurate with those of reflector elements.

The STS is modeled as a rigid body (NASTRAN CONM2 element) with the STS mass connected

to a beam mount by a rigid massless element (NASTRAN RBAR elemen0. The mass moments of

inertia of the STS about its center of mass are taken as: Ixx=2.03E6, Iyy=9.26E6, Izz=9.72E6,

Ixy=4.1E4, Ixz=l.9E4, and Iyz=l.01E3 (N-s2-m) where x, y, and z refer to the roll, pitch, and

yaw axes, respectively, of the STS.

2.2.1.3 Reflector Properties. The 5-meter reflector has four bays and a strut angle of 45 degrees.

The modules of elasticity of each strut is 1.38E11 N/m2 and the weight density is 1.52E3 Kg/m3.

Upper and lower surface struts are 2.22 cm diameter tubes with a wall thickness of 0.7 mm.

Diagonal struts are 2.22 cm -diameter tubes with a wall thickness of 0.48 ram. Strut lengths vary

from approximately 118 cm for the diagonals to approximately 150 (cm) for the upper and lower

surface struts. Total mass of the 5-meter reflector structure is 39.3 Kg. The fundamental natural

frequency of the reflector cantilevered from its mounting points is 9.29 Hz. The fundamental free-

free reflector natural frequency is 41.7 Hz. The lowest pinned-pinned local natural frequency of an

individual strut is approximately 110 Hz.

The 15-meter reflector has 12 bays. The 5-meter reflectors truss structure is a four-bay section of

the 15-meter reflector. Therefore, the strut sizes, strut angle, and material properties for the 15-

meter reflector are the same as those given above for the 5-meter reflector. The total mass of the

15-meter reflector structure is 250 Kg, its fundamental cantilevered natural frequency is 1.44 Hz,

and its fundamental free-free natural frequency is 12.0 Hz. Note that the 5-meter reflector is

significantly stiffer than the 15-meter reflector with the same bay size and truss depth.

2.2.1.4 Truss-Beam Effective Properties. Effective mass and stiffness properties of truss beams

are found from detailed finite element models of several deployed bays. Stiffness properties are

found by applying unit longitudinal forces, unit transverse forces, and a unit couple to each end of

a section model and computing the axial, bending, and torsional stiffnesses, respectively, of a

Bernoulli-Euler beam that would yield equal static deflections under equivalent applied loads.

Effective masses per unit length are found by uniformly distributing total masses of the various

truss-beams.
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Both "square"and "diamond" truss-beamdesignsarccandidates.While thedesignshave equal

axialstiffnesscs,adiamond mlss-bcam providesapproximately2.4timesmore torsionalstiffness

but approximately2.1 timeslessbending stiffnessthana squaretruss-beamofcomparable

dimension and mass per unitoflength.The diamond beam designispreferredoverthesquare

beam designbecauseityieldsreflector-beamsystemnaturalmodes withthefrequencyofthe

fundamentaltorsionmode commensurate withthefrequencyofthefundamentalbendingmode.

Using a squarebeam designyieldssystem modes dominated by a beam-torsionmode ata

frequencyapproximately0.65ofthatforacomparable diagonalbeam.

The choiceof particularbay and strutsizesfora truss-beamisbased on stiffnessratherthan

strengthcriteria.Throe beam configurations(sixtotal)referredtoas "flexible,""nominal,"and

"stiff'were consideredforthisstudy.Propertiesof thethreebeams arcbased on theireffectson

systemcharacteristics.

Effectivemasses per length(Kg/m), axialstiffnesses(N),bending stiffnesses(N-m2), and

torsionalstiffnesses(N-rn2)forthe 6.S-meterbeams arc,respectively:1.34,7.21E6, 1.38E11,

and 6.51EI0 fortheflexiblebeam; 2.69,4.63E7, 3.51E12, and 1.23E12 forthenominal beam;

and 5.39,9.25E7, 2.11E11, and 7.37E12 forthestiffbeam. The firstcantileveredbending

frequenciesof thethreebeams arc2.5,8.8,and 15.2(Hz),respectively.

Effectivemasses per length(Kg/m), axialstiffnesses(N),bending stiffnesses(N-m2), and

torsionalstiffnesscs(N-m2) forthe20-meter beams arc,respectively:2.69,4.63E7, 3.51E12,

and 1.23E14 fortheflexiblebeam; 8.95,3.02E8, 7.03E13, and 2.45E13 forthenominal beam;

and 13.4,6.05E8,4.22E14, and 1.47E14 forthestiffbeam. The fastcantileveredbending

frequenciesof thethreebeams are0.93,2.3,and 4.6Hz, respectively.Note thatthe flexible20-

mcter beam has thesame propertiesas thenominal 6.5-meterbeam.

2.2.1.5 Deployed System Dynamic Characteristics. Nine deployed reflector-beam systems are

considered, consisting of flexible, nominal, and stiff beams in each of the three combinations of

reflectors and beam lengths. The frequencies for each of the nine systems of the two lowest elastic

natural modes of vibration are given in Table 2-7.

The dynamic characteristics of each configuration are dominated by beam bending and torsional

flexibility. The STS is so massive and stiff relative to the reflector-beam structure that its

participation is quite small in any dynamic response and/or in the lower natural modes of vibration.

Both reflectors are also quite massive and stiff relative to the beam, so that in the lower natural

modes of the system they participate as nearly rigid bodies. This is seen, for the second and third

2-14



Beam

Description

Table 2-7. Summary of System Lowest Natural Frequencies (Hz)

Configuration 1

5-m Refl/6.5-m Beam

1St Tors. 1st Bnd.

Configuration 2

5-m Refl/20-m Beam

1St Tors. 1st Bnd.

Configuration 3

15-m Refl/20-m Beam

1st Tors. 1st Bnd,

Flexible 0.460 0.592 1.52 0.40 0.157 0.218

Nominal 2.05 2.89 6.18 1.52 0.668 0.892

Stiff 4.87 6.41 8.81 3.39 1.33 1.37

configurations with a flexible beam, by examining the mode shapes of Figures 2-6a thin 2-6d and

2-7a through 2-7d, respectively.

L

G

Y

Mode 7, Freq = .399 Hz

_L X

Figure 2-6a. First Elastic Natural Mode: 5-Meter Reflector on 20-Meter Flexible Beam
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Mode 8, Freq = .400 Hz

Figure 2-6b. Second Elastic Natural Mode: 5-Meter Reflector on 20-Meter Flexible Beam

L
x
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Mode 9, Freq : 1.52 Hz

Lx

i

Figure 2-6c. Third Elastic Natural Mode: 5-Meter Reflector on 20-Meter Flexible Beam
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Mode 7, Freq = .157 Hz

X

Figure 2-6d. Fourth Elastic Natural Mode: 5-Meter Reflector on 20-Meter Flexible Beam

L
X

L

D

Mode 10, Freq = 3.46 Hz

LX

Figure 2-7a. First Elastic Natural Mode: 15-Meter Reflector on 20-Meter Flexible Beam
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Mode 8, Freq = .218 Hz

X

Hgurc 2-7b. Second Elastic Natural Mode: 15-Meter Reflector on 20-Meter Flexible Beam

d

Mode 9, Freq = .374 Hz

LX

X

Figure 2-7c. Third Elastic Natural Mode: 15-Meter Reflector on 20-Meter Hexible Beam
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4 Mode 10, Freq = ,604 Hz

Figure 2-7d. Fourth Elastic Natural Mode: 15-Meter Reflector on 20-Meter Flexible Beam

Table 2-7 shows that a range of system dynamic characteristics is obtained by varying truss-beam

stiffness properties. When the beam stiffness is closer to that of the reflector (the stiff case), the

system natural frequencies are relatively high. This situation is preferable from the view of

accomplishing a specific mission. However, from the view of verifying structural dynamics

technologies required for future missions, i.e., for systems that perhaps are so large that they

cannot be satisfactorily tested on Earth, the more flexible beams are preferred.

The study of Reference 7 considered the interaction effects of large STS payloads with the STS

autopilot. It was determined that combined STS-payload elastic modes with natural frequencies

greater than 0.15 Hz do not significantly interact with the autopilot. Therefore, 0.15 Hz is a lower

bound on the lowest natural frequency of the selected reflector-beam-STS systems. Note that the

flexible beam case of the third configuration has lower frequencies that are close to this lower

bound.

2.2.1.6 Preliminary Loads Analysis. Primary reaction control system (PRCS) operation by the

STS will induce significant dynamic loads in the deployed reflector-beam systems. Should PRCS

operation be necessary once the experiment is deployed, it is desirable, particularly since the

reflectors cannot be retracted, for the system to be able to survive.
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For a preliminary analysis, PRCS thruster combinations are formed to give predominantly roll,

pitch, and yaw attitude torques. Then for each of roll, pitch, and yaw, the appropriate combination

of thrusters is pulsed (selected thrusters fine simultaneously) and the dynamic response is

computed. For roll and yaw, the pulse duration is tuned to be equal to one half of the period of the

lowest torsional mode. For pitch, the pulse duration is tuned to be equal to one half of the period

of the lowest xz-plane bending mode. From the computed dynamic responses, one obtains the

maximum effective bending moment, axial load, and shear load in the truss beam. The maximum

effective moment and loads are then applied simultaneously to a detailed finite element model of the

appropriate tress-beam, and member stresses are computed.

Table 2-8 summarizes the internal loads due to pitch, roll, and yaw tuned PRCS torques for two

configurations, the 5-meter reflector on a flexible 6.5-meter beam and the 15-meter reflector on a

flexible 20-meter beam. Note that, as one would expect, the 15-meter refiector/20-meter beam

configuration has the highest internal loads. However, even this configuration survives our tuned

PRCS pulses with a factor of safety of two.

Table 2-8. Summary of Internal Loads to PRCS Attitude Torques

5M Reflector/6.5M Beam

Torque Direction

Description Roll Pitch Yaw

% Allowable Stress 13 15 7

% Allowable Buckling Load 13 14 7

15M Reflector/20MB earn

Torque Direction

Roll Pitch Yaw

36 43 25

48 58 34

2.2.1.7 STS Vernier RCS Excitation for Dynamics Experiments. On-orbit experiments are

required to verify structural dynamic modeling of deployable truss structures. In this section, we

evaluate the STS vernier RCS as a possible disturbance source for on-orbit structural dynamics

experiments (Figure 2-8).

The STS vernier thrusters F5R, F5L, R5D, and L5D identified in Figure 2-8 are selected since

plumes from their firing will not impinge on the deployed reflector-beam. A simple sequence of

firing these four thrusters is used to excite each deployed structure. Measuring time from 0.0 at the

start of the sequence, we consider the following firings: thruster F5L from 0.0 to 2.0 seconds,

thruster L5D from 0.0 to 4.4 seconds, thruster F5R from 7.52 to 9.52 seconds, thruster R5D from

7.52 to 11.92 seconds, thruster F5L from 14.96 to 16.96 seconds, thruster L5D from 14.96 to

19.36 seconds, thruster F5R from 22.48 to 24.48 seconds, and thruster R5D from 22.48 to 26.88
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II SELECTED VERNIER RCS THRUSTER FIRINGS II INTf:'RNAL (STRUCTURE MOUNTED) TORQUE

ACTUATORS

Figure 2-8. Two Approaches to Exciting the Reflector/Beam Were Examined

seconds. This sequence produces two cycles of x- and z-axis torques with net magnitudes varying

from approximately -472 to +237 and -1294 to +1305 (N-m), respectively; and it produces four

cycles of y-axis torque with net magnitudes varying from approximately +901 to -673 (N-m). The

sequence is the same as that in Table 1 (Files 28 and 29) of Reference 15, which was determined

by C. S. Draper Laboratories in conjunction with Rockwell International to excite in-plane, out-of-

plane, and multi-modal responses of the Solar Array Flight Experiment (SAFE) wing, while

minimizing the net angular accelerations of the STS.

The structural vibrations excited in each reflector-beam configuration are small. Two measures of

the vibration magnitude are relative line of sight (LOS) and reflector tip motion (Figure 2-9). Each

measure has three components, one along each of the x,y,z axes. Table 2-9 shows the maximum

magnitude of each component of each measure for the three reflector/flexible beam configurations.

Note that while the torques transmitted to the structure at the beam's base are relatively large, the

accelerations induced are small, producing small excitation in all configurations.

The magnitudes of the responses produced by the vernier RCS sequence are not large enough for

good experimental identification of the structural dynamic characteristics. Consequently, structure-

mounted actuators will be required for on-orbit structural dynamics experiments.
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Two Primary Performance Measures Were Used to Evaluate Open-

and Closed-Loop Dynamic Response

Table 2-9. Maximum Performance Measures Response Summary

Relative LOS, x-axis (Arc See)

Relative LOS, y-axis (Arc Sec)

Relative LOS, z-axis (Arc See)

Tip Deflection, x-axis (mm)

Tip Deflection, y-axis (mm)

Tip Deflection, z-axis (mm)

5M Reflector 5M Reflector 15M Reflector

6.5M Beam 20M Beam 20M Beam

14.0 22.0 180.0

5.4 25.0 54.0

9.0 11.0 110.0

0.13 1.4 3.9

0.42 1.5 15.0

0.05 0.63 1.5

2.2.1.8 Structure-Mounted Torque Wheels for Dynamics Experiments. To be most effective,

actuators should be at locations of high modal disturbance. Only torque-type actuators were

considered because of their ability to operate easily at the low frequencies associated with the lower

modes of the deployed flight experiment structures. For torque-type actuators, the modal slopes

are indices of disturbance magnitude.

Upon examining the slopes as a function of location in each of the lowest six elastic modes for

each configuration, it was clear that the reflector/beam interface structure and the reflector truss

itself are both effective locations for actuators. The x-axis slopes in the first and fifth elastic
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modes,they-axisslopesin thesecondandfourthmodes,andthez-axisslopesin thefirst, third,
andfifth modesareall highattheselocations.Thesixthelasticmodehashighy-axisslopeatthe
interfacestructurebutnotin thereflectorstructure.

Thereflector/beaminterface structure was selected as the location of internal torque actuators based

on effectiveness as well as the ease of packaging the hardware when the structure is stowed. Two

or more skewed torque wheels mounted at the interface are required for multi-mode excitation.

Three skewed torque wheels capable of generating individual torques about each of the x, y, and z

axes were selected.

The torque wheels were sized to be able to produce experimentally significant response amplitudes

in 30 seconds of sinusoidal excitation at the lowest deployed natural frequency. Wheels capable of

5 N-m torques are sufficient to produce tip deflections greater than 8 cm and relative line of sight

rotations greater than 0.85 deg for the 5-meter reflector/6.5-meter flexible beam configuration.

Wheels capable of 10 N-m torques are sufficient to produce tip deflections greater than 3.5 cm and

relative line-of-sight rotations greater than 0.12 deg for the 15-meter reflector/20-meter flexible

beam configuration.

A torque wheel actuator capable of 10 N-m already exists and is applicable to the 5- and 15-meter

reflector/'20-meter beam experiments herein. It has a total mass of 22.7 Kg including its

electronics, a bandwidth of 125 Hz, a breakout resolution of 3.5E-3 N-m, a wheel diameter of

38.4 cm, and a maximum wheel speed of 400 RPM. For the 5-meter reflector/6.5-meter beam

experiments, torque wheels capable of 5 N-m are appropriate. Such an actuator does not exist off-

the-shelf although it can be produced by down-sizing the larger actuator. Such an actuator would

have a total mass of approximately 11.3 Kg.

Using three of the existing 10 N-m torque wheel actuators at the reflector/beam interface adds a

total mass of 68 kg at this location. This mass is significant when compared to the 39.3 Kg mass

of the 5-meter reflector and the 250 Kg mass of the 15-meter reflector. Such a large mass

significantly affects the structural dynamic characteristics. In fact, the natural frequencies given in

Table 2-7 for the 5-meter reflector/20-meter beam configuration and the natural modes of Figures

2-8 include an actuator mass at the reflector/beam interface.

However, the natural frequencies in Table 2-7 for the other two configurations do not include

actuator mass, although it is significant. Indeed, adding a 68-Kg mass at the interface of the 15-

meter reflector/20-meter beam configuration decreases the system natural frequencies of Table 2-7;
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e.g.,for theflexiblebeamcase,thelowesttwo naturalfrequenciesdecreasefrom0.157and0.218
Hzto 0.155and0.198Hz,respectively.Forthe5-meterreflector/6.5-meterbeamconfiguration

andtheflexiblebeamcase,addinga34Kg mass at the interface decreases the lowest two natural

frequencies from 0.46 and 0.59 Hz as given in Table 2-7 to 0.325 and 0.440 (Hz), respectively.

2.2.1.9 Sensors for Structural Dynamics Experiments. Sections 2.2.1.7 and 2.2.1.8 above

considered excitation sources for on-orbit structural dynamics experiments. It remains to

determine sensors for these experiments. The complement of sensors must be able to observe

motion in all of the lower modes of vibration and also to observe the quasi-static straightness of the

beam as well as the alignment of the reflector relative to the beam.

To observe the dynamic motion, three skewed-rate integrating gyros mounted at the reflector/beam

interface structure and seven triads (a triad consists of three mutually orthogonal accelerometers),

21 in all, of force-rebalance accelerometers distributed throughout the structure were considered.

Four of the aceelerorneter triads are distributed along each beam structure, one triad each at 10%,

40%, 70%, and 100% of the length as measured outward from the STS.

In addition, one accelerometer triad is located at the reflector tip, and one triad is located at each of

two of the reflector edges. In all, the accelerometers are distributed so as to allow accurate

identification of the lowest six natural mode shapes. The rate gyros have a natural frequency of

20Hz, a minimum sensed rate of less than 2 degrees per second, and a mass of approximately 0.75

Kg. Each accelerometer has a natural frequency of 300 Hz, an overall accuracy of 0.020 milli-

G's, a threshold accuracy of 0.001 milli-G, and a total mass of 0.10 Kg.

Retro-reflector field trackers are used to observe the quasi-static alignment of the beam and the

reflector to the beam. Five 30-roW laser diodes are mounted at the base of the beam in the

bearn/STS support structure. Laser targets are distributed along the beam and across the reflector.

Four laser targets are located along the beam, one each at 10%, 40%, 70%, and 100% of the length

as measured outward from the STS. In addition, laser targets are located on the reflector at the tip,

each of two edges, and at the center.

2.2.1.10 Active Vibration Control Experiments. The primary interest in the dynamics flight

experiments is to verify structural dynamic modeling technology. Indeed, uncertainty in the

accuracy of structural dynamic models is a major contributor to the issues of control/structure

interaction. However, the instrumentation required for structural dynamics experiments can also

be used in active vibration control experiments.
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In thissection,thedesignandsimulatedperformanceof asimplerate-feedbackcontrolsystemfor
the15-meterreflector/20-meterflexiblebeamconfigurationispresented.

Thecontrolsystemconsistsof three simultaneous loops, one for each of roll, pitch, and yaw

(Figure 2-10). Each rate gyro output is filtered by a fh'st-order roll-off filter at 90 (rad) and a first-

order high-pass filter at 0.1 rad. The filtered output of each gyro, times a gain, is fed to the torque

wheels to produce a control torque about the appropriate axis. The roll, pitch, and yaw loop gains

are 6.5E4, 2.0E5, and 4.0E4, respectively.

Closed-loop natural frequencies and damping ratios are tabulated in Figure 2-10 for the lowest six

elastic modes. Figure 2-11 compares the frequency response of a typical transfer function, the y

ClSI'_S

_L:XI_LES _Of:F I GIt P SS

ROLL, KR - 6 5E4

PITCH: KR - 2 0E5

YAW KR. 40E4

IN LB BEG

CLOSED LOOP PERFORMANCE

t5M REFLECTOR - 20M MAST (FLEXIBLE 15)

MODE FREQUENCY ROTATIONAL DAMPING SECOIIDB TO

NUMBER (flARISEC) AXIS RATIO 95%

7 0 9791 ROLIJYAW 0 0991 30 90

8 1 3681 PITCH 0 1890 11 60

9 23411 YAW 00973 13 10

10 3 ?677 PITCH 0.5,970 13 30

II 7 5188 ROLL/YAW 0.0692 5 80

12 37 8429 PITCH O 0871 I 20

Figure 2-10. Closed-Loop Vibration Control Evaluation Model

axis disturbance torque to the y-axis rate gyro output, for the uncontrolled system to that of the

closed-loop system. The comparison shows the significant increase in damping of the system due

to the simple controller. Note that the three peaks in Figure 2-11 are associated with the second,

2-25



15M REFLECTOR, 2OH HRSTI OPEN/CLOSED LOOP FREQ.

R¥ CONTROL TO RY RRrlE (]¥RO OUTPUT IL;'LI:IONI

RESPONSE

Figure 2-11. Active Damping Augmentation Significantly Reduces Modal Peaks in the Frequency

Response

fourth, and sixth elastic modes. The simple rate feedback provides significant active damping of

the lowest six modes of vibration.

The active damping system is useful in conducting the structural dynamics experirnents. It

provides a mechanism for decreasing the time to structural quiescence between excitation/data-

collection cycles. While the simple system is sufficient for damping, more complex control

algorithms can also be verified using the same fiight-experiment hardware.

2.2.1.11 Articulation and Pointing Control Evaluation. Articulation and pointing control are not

included in the flight experiments for the foUowing eight reasons:

1. Articulation and pointing control is not identified in Section 2.1 as a technology development

issue for large NASA and commercial antennas. It is felt that the technology required is within the

current state of the art.
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2. Actuatorsfor precision pointing arc relatively expensive.

3. Pointing sensors are not generic; the best is probably to use the operating antenna itself to

produce an attitude error signal, but this depends on the operation mode of the antenna.

4. Since truss antennas arc relatively stiff, controller sensitivity to model errors is reduced.

Indeed, the lowest elastic-mode frequencies arc relatively high compared to other antenna concepts,

and the lowest modes arc distinct up to frequencies commensurate with member local modes.

5. The main control/structure interaction "problem" is due to uncertainty in the dynamic

characteristics of the structure, a technology that is included in our program. The uncertainty will

be reduced through the analysis, ground- test, flight-test sequence.

6. Demonstrating precision pointing on a flight experiment does not provide generic knowledge.

Instead, it is a feat of knowing the sensor(s), actuator(s), and mathematical model for the particular

configuration.

7. Actuators and sensors can be characterized on the ground, in many cases, making orbital

verification unnecessary.

8. Line-of-sight settling after a transient event, such as a retargeting or other maneuver, depends on

vibration suppression, which is included in the baseline experiment.

The alignment technology identified in Section 2. I as an issue for NASA and commercial antennas

is addressed in Section 2.2.2 under reflector surface measurement and adjustment.

2.2.1.12 Ground- and Flight-Test Scenarios. Verifying structural dynamic modeling

methodology requires a sequence of analysis, ground-test, and flight- test. The same is true for

verifying flexible structure control technology. In this section, ground- and flight-test scenarios

for verifying these technologies are outlined.

First, consider the structural dynamics ground-tests. Since future larger structures will not be

fully testable on the ground, accurate verification models must be created with only development

and substructure testing. Development tests include static stiffness tests of the deployer/repacker

(STS/beam interface structure), of a typical beam section (approximately five bays), and of the

reflector/beam interface structure. Substructure tests include static and vibration tests of the beam

alone and of the reflector alone. The vibration tests include random excitation in three directions,

and sine-dwell tests for the lowest six modes at three different excitation levels. Both beam and

reflector substructure tests are performed with the structure suspended horizontally.
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To avoid coupling of the suspension system with the 20-meter flexible beam cantilevered modes

(fundamental frequency equals 0.93 Hz), a suspension length of approximately 7 meters gives a

factor of 5 frequency separation between the fundamental structural frequency and the pendulum

frequency. The objective of the tests is to build a database of information on the measured and

modeled properties of the deployable truss structures. Appropriate analyses must be performed to

correlate test data with prior analyses and to update analytical models as necessary after each test.

Finally, for the verification flight experiment structures, the assembled system is ground tested.

Both static and vibration tests will be conducted for final pre-flight tuning of the structural dynamic

models and to understand any additional modeling problems. The suspension system for the

assembled system will couple strongly with the structure (a factor of 5 frequency separation would

require a pendulum length of approximately 150 meters) so that the suspension system must be

modeled and its effects adjusted analytically.

Next, consider control dynamics and instrumentation ground tests. A hybrid test approach is used

once development tests have been performed. Development tests arc performed on breadboard

electronics units for the excitation and damping subsystem, the motion measurement subsystem,

the modular distributed instrumentation subsystem, and the figure control subsystem. They are

also performed on a proof-of-concept figure adjustment actuator and a slow deployment

mechanism. Hybrid tests of the excitation and damping actuators and sensors verify their

integrated function, but with the beam's motion simulated by computer. Hybrid tests of the

reflector structure integrated with the figure control actuators use simulated sensing and verify the

actual figure with photogrammetry. In addition, assembled system hybrid tests are performed to

verify integrated operation of all actuators and sensors and to verify control algorithms, with

system motion simulated by computer. Finally, for the flight experiment article, ground vibration

and figure control tests of the deployed, suspended system using actual system motion are

performed.

Lastly, consider flight tests for both structural dynamic identifcation and for vibration control

performance. A full set of structural dynamics tests is performed after the beam is deployed,

before deploying the reflector, and again after the reflector is deployed. The torque wheel actuators

are used to produce random excitations in roll, pitch, and yaw both individually and

simultaneously. The wheels are also used to produce sinusoidal torques at near resonant

frequencies of each of the lower five modes.
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Once the amplitude of motion has built up, the excitation is removed and data is collected during

the free decay. This is followed by a period of operation with active damping to bring the structure

back to quiescence. After the structural dynamics tests, control tests are performed for various

control algorithms. The torque wheels are used both to excite and to control the system. The

closed-loop performance is measured for later correlation with predicted performance.

2.2.1.13 Comparison With NASA's Control of Flexible Structures (COFS) II Progam. At the

time this study was conducted, the Control of Flexible Structures (COFS) I program was in

development. COFS I consisted of mainly structural dynamics and some limited controls

experiments on a 60-meter truss- beam deployed from the STS. At the time, there was additional

simultaneous activity to define a COFS II technology verification flight experiment directed

primarily at advanced controls technology issues. As mentioned earlier, this study is distinct in

that it addresses technologies associated with deployable truss structures; it does not specifically

address technologies associated with control of flexible structures. Nevertheless, there are

similarities between the present flight experiment and the one envisioned at the time for COFS lI.

The COFS II program was intended to verify all the following technology issues: maneuver

control, articulation and slewing, pointing (line-of-sight stabilization), shape control, alignment

control, system identification, structural concept evaluation, deployment characterization, vibration

suppression, adaptive control, and fault detection, identification and reorganization. This study

found (Section 2.1) that NASA and commercial antenna missions required development of only

shape control, alignment control, structural modeling, and deployment characterization technology

issues. The present flight experiment, therefore, addresses all of these identified technology

issues. It also addresses, at least partially, vibration suppression technology. The remaining

technology issues of COFS II can be included as options, although their development is not

identified as needed for future NASA and commercial antenna missions.

2.2.2 SURFACE MEASUREMENT AND ADJUSTMENT. The development of an active, on-

orbit reflector-surface control system would enable a number of future space antennas (see Section

2.1.6.2). A major objective of the deployable truss technology program is to design and

demonstrate surface control techniques that allow truss/mesh reflectors to function adequately over

the full range of baseline design parameters (Table 2-5). The most critical needs are for sensors to

measure surface figure errors, actuators to make precise adjustments, and a control strategy that

minimizes complexity.
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2.2.2.1 Requirements. Reflector surface errors are measured by f'n'st finding the Best Fit

Paraboloid (assuming that the ideal surface is a paraboloid) for the actual surface, as illustrated in

Figure 2-12a. The surface roughness, A, is then defined to be the difference between the Actual

and Best Fit surfaces, and ARM S is the root mean square value over the entire surface area.

Defocus is equal to the displacement of the Best Fit paraboloid's focal point from the Ideal

paraboloid's focal point measured along the common centerline.

Allowable surface roughness and defocus errors vary with antenna operating frequency, as

depicted in Figures 2-12b and c. The bands of values range from "typical" to "most

stressing"errors. Representative values are called out in the plots for an operating frequency of 30

GHz, which is at the upper end of the baseline design range. They are ARMS < 10 mils and

Defocus <_.50 mils.

a.) DEFINITION OF ERRORS

/
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b.) SURFACE ROUGHNESS REQUIREMENT
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Figure 2-12. Reflector Surface Accuracy Requirements

2.2.2.2 Performance Capability. Analytical predictions of surface roughness have been verified

by laboratory tests on small antennas at General Dynamics. The individual error sources are scaled

with size and combined to obtain a total surface error prediction in Figure 2-13 for systems without

on-orbit surface control. The values shown are for an eight-bay truss supporting a mesh reflector

surface that uses many flat surface segments ("facets") to approximate the ideal shape. Thus, if

perfect on-orbit adjustments were made, all of the error components except the "facet" term could
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be eliminated. This means, for example, that the uncontrolled reflector in this example could not

satisfy the 50 mils roughness requirement for a 30 GHz antenna. However, adding on-orbit

surface control would enable 30 GHz antennas up to 21-meter diameter.

The same approach could extend the range of 3 GHz antennas from the 26-meter diameter limit for

passive antennas to 210 meters by adding active shape control.

2.2.2.3 Actuation. There are three general approaches for adjusting surface shape with minimal

impact on the current passive design: changing the shape of the supporting truss, adjusting the

location of the control line/truss interface points, and changing the length of individual control lines

connecting the mesh to the truss. Figure 2-14 illustrates specific design approaches for each of the

general approaches. Detailed design trades and analyses are needed to select the best overall

approach, which might involve a combination of actuator types

One analysis was performed to help define the issues. A structural/thermal model of a 6.4-meter

diameter reflector with four truss bays and 19 spiders was developed. It included truss, control

line and mesh elements that were disturbed by uniform temperature changes and gradients caused

by eight sun illumination conditions. Typical error contour plots for two conditions are shown in
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Figure 2-14. Surface Adjustment Approaches

Figure 2-15, and all results are summarized in Table 2-10. Surface roughness and defocus errors

are listed for both uncontrolled and controlled mesh. The "controlled" values were obtained by

moving each control line bundle attach point normal to the mesh surface. The adjustment strategy

was to compute the movement needed to minimize the rms error of the mesh directly attached to the

bundle lines, and then to make all adjustments at once. This adjustment scheme had the same

general result in all eight illumination cases -- the surface error was significantly decreased and the

defocus error was significantly increased.

These results suggest that:

• A strategy that simultaneously minimizes both errors is needed.

• Adclitional actuator degrees of freedom (e.g., spider motion parallel to the mesh surface) may be

needed.

Furthermore, it is worth noting that the existing mesh/control line/truss configuration was not

specifically optimized for on-orbit adjustment. A better design may be achievable.

2.2.2.4 Surface Measurement. Surface measurement issues are driven by both surface accuracy

and measurement speed. For a typical space antenna, surface measurement accuracy is

approximately 2.5 parts per million (ppm). During manufacture and initial adjustment checkout,

one second per measurement is acceptable. For on-orbit thermal compensation measurements must
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Table 2-10. Residual Surface Error Summary

SUN ILLUMINATION CONDITION

• RACK

• SIDE

• FRONT. (CASE 1)

• ECLIPSE

• SPACECRAFT SHADOW NEAR
INBOARD EDGE

• SPACECRAF_'T SHADOW ON

CENTER (CASE 2)

• SPACECRAFT SHADOW NEAR

QUTROARD EDGE

• AUX. REFLECTOR AND FEED

MAST SHADOW

REQUIREMENT

RAfS SUnFACE ERBOR (^ILLS)

UNCONTROLLED CONTIIOLLED

5.3 3.8

5.9 4.2

3.7 2.3

19.6 13.1

9.0 7.7

11.7 9.7

8.6 6.6

6.6 4.8

10

FOCAL LENGTH CIIANGE (AIIL$1

UNCONTROLLED

-22 8

-38.3

-27.1

-141.9

224.5

270.0

58.9

24.7

CON TROLLED

156.2

93.9

112.3

638.7

290.6

445.0

266,4

186.2

I
I

50
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be made an order of magnitude faster (0.1 see per point). To satisfy active dynamic control,

measurements must be made at least another order of magnitude faster (0.01 sec per point).

There are a number of concepts that could be used to measure surface position. Some measure

motion transverse to the line-of-sight direction. Examples are:

• Imaging systems

• One- and two- dimensional detectors

Other techniques make measurements along the line-of-sight direction:

• Geometric techniques (triangulation)

• Time-of-flight techniques

• Interferometric techniques

• Diffraction techniques (e.g., speckle sensor)

Several development efforts have been started to adapt these proven techniques for flight spacecraft

applications. A significant example is JPL's Spatial High Accuracy Position Encoding Sensor

(SHAPES). In a typical application, SHAPES would be attached to the feed of a space antenna

and measure motion of a number of retroreflector targets on the reflector (Figure 2-16). A time-of-

flight technique is used to measure motion along the line-of-sight, and motion-of-target images on

a two-dimensional CCD focal plane are used to measure displacements transverse to the line-of-

sight direction. Laboratory experiments at JPL have demonstrated a measurement speed of 0.1 sec

per target, which is adequate to control on-orbit thermal distortions, and an accuracy of 0.025

millimeter (1 mil), which is adequate for a 30-GHz antenna.

While the SHAPES sensor satisfies the baseline requirements, there could be significant

advantages from simpler approaches. One potential concept is shown in Figure 2-17. It features a

rotating low-power beam mounted at the center of the antenna. The beam sweeps out a plane near

the surface of the reflector, and a number of one-dimensional CCD detectors mounted to intercept

the beam measure motion perpendicular to the antenna surface by detecting the laser crossing

position. This concept offers potential benefits: low cost, rapid measurements, and long life.
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2.2.2.5 Development Recommendations. Development should address actuators, sensors,

control algorithms, and optimization of the integrated control system/structure design to minimize

the number of actuators and sensors. A control system capable of satisfying baseline requirements

for a quiescent antenna should be developed and demonstrated. A laboratory demonstration will be

adequate for proof-of-concept testing. However, tests in space would provide additional benefits:

The measurement system could determine changes in surface accuracy under different orbital

conditions, and the technology readiness level of the control system could be improved.

2.2.3 ELECTROMAGNETIC (RF) EVALUATION. One of the issues typically addressed for

experimentally evaluating RF system performance on orbit is whether direct or indirect

performance measurements should be made for comparison with analytical predictions and ground

test results. Indirect measurements on orbit (surface distortions and deflections) are an integral

part of the planned flight test program. These measurements are used to assess the capability to

predict on-orbit distortions and resulting performance degradation using analysis and ground

testing. As an option, a program to make direct RF measurements on orbit has also been defined.

The objective of the electromagnetic evaluation task was to identify RF measurement issues and

define recommended approaches for directly measuring RF performance on orbit

2.2.3.1 RF Measurement Issues. Measurement issues that must be addressed to develop a suitable

RF measurement test plan include:

• Sun orientation with respect to antenna/Shuttle test configuration for thermal distortion testing.

This requires detailed a detailed Shuttle maneuvering study as impacted to the selected test

approach, i.e., far-field or near-field measurements.

• Stability required of test elements during measurements. Measurement uncertainty in the orbital

environment as a function of pointing stability and vibration is critical for accurate data.Co-orbital

signal source or receiver specifications. Critical parameters include power available, beamwidth,

range, control and time available for measurements.

• Use of the Shuttle RMS to support RF measurements. Issues include attachment of RF absorber

to the boom, positioning accuracy of the boom, installation of a field probe assembly and auxiliary

test reference antennas.

• Multipath errors due to RF reflections from earth or Shuttle.

• Blockage of test signals due to orbital configuration. This issue drives antenna test orientation

requirements and gimbal design.

• Auxiliary test antenna requirements for gain and phase reference. Primary requirements include

pointing accuracy, RF power level, equipment mounting and gimbal design.
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• Auxiliarypositionmeasurementandcontrolrequirements.Issuesincludenumberandlocationof

photogrammetictargets,accuracyrequiredof optical/RFrangingsystems,accuracyandprecision

requiredof field probesorreferenceantennaandspeedbandwidthof thecontrolsystem.
• Selectionof antennameasurementpointsto optimizetheirsensitivityto surfaceandalignment
variations.

• Selectionof genericantennadesignparameterstosatisfydifferentandpossibleconflicting

applicationsrequirements.

Thebasicmeasurementtechniqueusedto characterizethereflectorantenna system is also one of

the issues. Figure 2-18 illustrates measurement categories that were considered. A combination of

analytic and direct or indirect measurements is required to adequately characterize the on-orbit

performance of a large reflector. Cost and schedule programmatic issues become primary

constraints in def'ming the scope of a test program to measure the performance of a large reflector

antenna in space.

2.2.3.2 RF Measurement Techniques and Category Trades. Accurate knowledge of the antenna

system far-field performance is necessary to determine the operational capability in terms of gain

and pattern characteristics. Measurement techniques that were considered and the trade results are

summarized in Table 2-11. A critical aspect of performing measurements in space is the
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Figure 2-18. Measurement Categories for Obtaining Far-field Patterns in Space Environment
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Table 2-11. RF Measurement Techniques and Measurement Category Trades

MEASUREMENT

TECHNIQUE

rAR FIELD DIRECT

ADVANTAGES

- LONG DIST/_Icr RANGE AVAIlaBLE.

MEASUREM_.N; RANGE REQUInEMENT

FOR RANGE LENGTII ;_2D_'/_. RE/_DLY

SI.TISFIED

- DIIIECT ACCESS TO TEST ANTENNA FROIV

SIIUTTLE

- USES STANDARD. WELL OEVELOPEO

MEASUREMENT pROCEDURES

- I_NIMAL DATA PROCESSING REOUIRED IN

COMPARISON |O OTIIER TECHNIOUES

tK_I.OGRN'dlIC - MAy SE COMBINED WITll FAR-fIELD

DIRECT

COMPACT - GREATLY REDUCES It,_,NGE i31STANCE

N01RECT-NEAR-FIELD

PLANAR SCAN • Pt.ANAR RECTANGUtAR OR Pt.ANAR

POLAR SCAN IS SUI_SLE FOR OFFSET

REFLECTOR Ct INtACTERIZATION

• PROVIDES DIAGNOSTIC AND SETUP

INFORMATION

• MEASUREMENT SYSTEM CAN BE SETUP

IN A CON TFIOLI ED LABORATORY

ENVIRONMEN r WIrH TES T ANTENNA TO

ESTASLISIt PERFORMANCE BASE pRIOR

TO IN SPACE TESTING

• COMPLE TE FAR FIEI O INFORMATION IS

DERNEO FROM A StNGt E SET OF

NEAR FIELD MEASUREMENTS
• ANTENNA CAN BE TESTED WITIIOUF

BEING MOVED - NO GIMBAL REQUIRED ON

TEST ANTENNA

• PROVIDES IIIGll DENSITY PHASE

CONTOUR MEASUREMENT FOR SURFACE

CON I OUR CIIARACTEfllZA rioN

• PROVEN MEASUREMENT TECIINIOUE

• WELL DEVELOPED AND pROVEN

PROCESSING ALGORIII IMS AVAILABLE

SPHERICAL SCAN • REQUIRES USE OF CLOSELY

CONTROLLED CO ORBITAL SIGNAL

SOURCE

DISADVANTAGES I CONCERNS

- POTENTIAL MULIIPATll PROBLEM DUE TO

EARIH REFLECTION OF lEST SIGNAL

- REQUIRES USE OF STABLE CO ORBITAL

SOURCE A_ITUDE CONTIIOt OF SOURCE

- CIIANGE OF SUN ORIENTATION DURING

MEASUREMENT

- GIMBAL REOUIREMENIS FOR TEST AND

REFERENCE ANIENNAS

- LENG IH OF TIME REQUIRED TO N]EQUATEL¥

CHARACTERIZE ANTENNA

- REFERENCE ANIENNA MUST TRACK SPARKN_I

CARRIER CONTINGOUSLY DUllING

MEASUREMENTS

- REQUIRES PtfASE REFERENCE ANTENNA

MOUNt E') ADJACENT TO TEST ANTENNA

- GIMBAL INGAr'_OINTING OF REFERENCE AND

lEST AN rENNAS

- MAIN TAIhlNG CONTROL OF RANGE DISTANCE

10 EXTRI: MBLY lIGHT TOLERANCE

- REOUInES R_IRCE AN I ENNA MUCH LARGER

THAN TEST ANIENNA

q
• WIDE ANGLE PAl-tERN DATA REQUIRES USE

OF AUXILIARY MEASUREMENT SYSTEM
• flUS USE

- POSITIONING ACCURACY OF RMS

- INST_I LA|_)N OR RF ABSOIISER ON RMS

BOOM AND TEST PROSE ASSEMBLY

- AVAILABll ITY OF SPACE QUALIFIED RF

ABSORBER

° DES_N. MANUFACTURE. AND INSTALLATION
OF FIELD PROt_ ASSEMBLY

• MANEUVERING OF SItUnLE TO _mN'I'AIN

CONSIAN; SUN ANGLE DURING

MEASUREMENT

• MDOIFF._J_ TICN Of RMS OR DEVELOFMENT OF

FIELD F ROSE ASSEMBLY FOR APERTURES >5

ME rER DIAMETER

• MEASUREMENT UNCERTAINTY IN ORBITAL

ENVIRONMENT

• TIME REClUIRFD FOR AOUINING DATA

• MINIMUM FIELD PROSE SCAN RANGE IS

APPROXIMATELY I 25 TIMES APERTURE

DIAMETER

• sHUn'LE MANEUVERING

• TIME REQUIRED FOR FULL DATA SET

AQUISITN_I

requirement that a specific sun orientation with respect to the antenna reference coordinated be

maintained to minimize thermal distortion changes during data acquisition periods. The effect of

the space environment on the measurement system also is a concern that must be addressed in

developing the test system.

To make direct far-field measurements, a change in sun orientation will occur unless the

measurements are made under full shadow conditions. Thus an indirect-near-field approach is

optimum when rigorous characterization of the antenna system is necessary. Also, this approach

provides a full set of near-field probe data for post -measurement analysis of antenna performance

for a more complete set of antenna gain, polarization, and pattern data. A functional diagram of the

proposed near-field test system is shown in Figure 2-19. This diagram is applicable to either a

planar rectangular or polar scanning approach.

2.2.4 EXPERIMENT DEFINITION. Experiment hardware configuration options center around

the requirements to be representative of large-scale flight hardware, to address the deployable truss

technology issues, and to satisfy the two basic configuration groundrules:
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Figure 2-19. Near-Field Test Diagram

• Experiments use a deployable geotruss antenna reflector combined with a deployable truss beam.

• All flight experiments use the STS

Primary experiment configuration drivers include number of flights, hardware size, and hardware

reuse. Because of the complexity of the experiments and the large quantity of experimental data,

two flights are planned with the first flight functioning as a prototype or pathfinder to check out

and validate the systems and procedures. Both flights axe used to gather experimental data.

The primary experiment hardware configuration issue is clearly size. The system performance

requirements are driven by future large, precision antenna systems up to I50 meters in diameter.

Because of scaling issues, it is desirable to have experimental hardware as close to full-scale as

possible. This goal is obviously constrained by considerations of STS compatibility, ground test

facilities, and program cost and schedule. To select the experiment hardware size two questions

must be answered What is the smallest size that will demonstrate the deployable truss structure

technology issues? Does that size meet the program constraints?
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Startingwithanexisting5-meterdeployablegeomassantennareflector,aperformance evaluation

was performed on reflectors 5, 15, and 20 meters in diameter. For the 5-meter reflector three

options were examined: use the existing hardware, refurbish and flight -qualify the existing

hardware, and fabricate new hardware tailored to meet experiment requirements. The 15- and 20-

meter reflectors were assumed to be new designs incorporating all experiment provisions. For

each reflector ground test flight and scaling issues were addressed. The evaluation results are

shown in Table 2-12.

Table 2-12. Reflector Configuration Performance Evaluation

PARAMETER

GROUND TEST

CONTOUR
DEPLOYMENT (FREE)

DEPLOYMENT (CONTROLLED)
RF PERFORMANCE (NEAR-FIELD)
VIBRATION
PASSIVE VIB. CONTROL
ACTIVE VIB CONTROL
SHAPE CONTROL

THERMAL (THERMNAC)

FLIGHT TEST

CONTOUR
DEPLOYMENT (FREE)
DEPLOYMENT (CONTROLLED)
RF PERFORMANCE
VIBRATION
PASSIVE VIB. CONTROL
ACTIVE VIB CONTROL
SHAPE CONTROL
THERMAL
REPACKAGE/REUSE

SCALING

CONFIGURATION
DYNAMIC
THERMAL
RF
OVERALL

EXISTING
5 METER

1.3

EXISTING
5 METER

(REFURB. &
FLT. QUAL.)

7
6
0
7
5
3
2
1
2

3.4

NEW

5 METER

6
7

6
6
6
6
6
10

7
5
5
8

6.6

NEW

15 METER

10
10
10
10
8
9
9

10

10

9
10
10
9
9
9
9

10
I0
9

94

NEW

20 METER

to
lo
10
2
lO
1o
lo
10
3

lO
lO
lO
lO

lo
lO
lO
lO
lO
7

10
10
10
10

9.2

Because the 20-meter reflector would not fit in existing RF and thermal/vacuum ground test

facilities, the 15-meter reflector had the best overall performance rating. Based on a preliminary

cost analysis, the 20-meter reflector costs approximately 63% more than a 15-meter article.

Because of this cost difference and the performance evaluation results, the 15-meter reflector was

selected as the baseline size for the experiment.

The next issue is reusability. Reuse was not selected for the geotruss reflector for the following

reasons:
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Thenextissueisreusability.Reusewasnotselectedfor thegeotrussreflectorfor thefollowing
reasons:

• Foroperationalsystemsreflectorretractionandreuseisnotarequirement.

• Thebasicgeotrussreflectorconceptis notdesignedfor automatedretractionandrestow.
• Costandrisk is highto addautomatedretractionandrestowto thegeotrussreflectorexperiment
hardware.

Withoutreuse,twogeotrussreflectorsmustbebuilt. Thusanew5-meterreflectorwasselected
for useon thef'nrstflight toreducehardwarecosts.The5-meterreflectorcansatisfactorily

demonstrateandcheckout theflight experimentsatamajorcostreduction.To furtherreducecost,
the5-meterand15-meterreflectorssharecommongeometryandstructuralelementdesigns.

Basedonthesystemperformancerequirementsandtechnologyissuesdiscussedin Section2.1as
well asthestructuraldynamicsandcontrols,surfacemeasurementandadjustmentandRFissues

discussedin Sections2.2.1,2.2.2,and2.2.3,abaselineexperimentconfigurationwasdefined.
Thisbaselineis summarizedinTable2-13. Thedetailedexperimentdesignsdiscussedin Sections

2.2.5and2.2.6usethisbaselineexperimentdefinition.

2.2.5 EXPERIMENT STRUCTURAL DESIGN DEFINITION. This section presents the

overall design approach for the ground and flight structural test articles. The basic approach to the

experiment structures design was to evaluate program objectives and establish requirements,

criteria, and methodology using existing design database for deployable geotruss reflectors and

linear truss beams. Selection of the experiment baseline configurations for ground- and flight-test

hardware was established by performing trade studies in all respective areas, as follows:

• Experiment hardware requirements

• Deployable geotruss reflectors

• Deployable linear truss beams

• Deployable reflector/beam interface

• Materials

• Deployment mechanisms

• Stowed experiment configuration

• Deployment sequence

• Utilities integration

• STEP/MPESS interface

• STS cargo bay interface

• Overall experiment configuration
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Table 2-13. Baseline Experiment Configuration Definition

PARAMETER PROTOTYPE FULLTEST
TESTARTICLE ARTICLE

RE_LLCIUROIAI_..ILR 5 N 15 N

REFLECTORF/D 1.3 1.3

REFLECTORMOUNTING OFFSET/EDDE OFFSET/EDGE

REFLECTORHARDWARE MEW NEW

OPERATINGRFFREQUENCY 14-30 GHz 14-30 GHz

SURFACEACCURACY 0.2 MH 0.2 !_4

POINTINGACCURACY 0.01DEG 0.01DEG

BEAHLENGTH 20 M 20M

REFLECTORlST MODALFREQ.9.29 Hz 1.44 Hz

SYSTEMIST MODALFREQ. 0.40 Hz 0.157 Hz

SHUTTLEINTERFACE STEPPALLET STEPPALLET

REFLECTORREUSE NO NO

BEAMREUSE YES YES

CONTROLLEDDEPLOYMENT

REFLECTOR YES YES

BEAM YES YES

GIMBAL- REFLECTORIBEMINO NO

GI_AL - BE/d_ISTEP YES YES
(1-AXIS)

EXCITATIONANDDA/_ING YES YES
SYSIEM

PASSIVEDAI_ING NO NO
TREATMENTS

ACTIVEVIBRATIONCONTROL YES YES

SURFACE YES YES
I & CONTROL

RF-FEEDALIC4__NT YES YES

TIVE PRECISION NO NO
INTINGCONTROL

ACTIVERF SYSTEM YES YES

PROTDGRM_4ETRY YES YES

COMMENTS

BASELII_ECOHMONBAYSIZE'_

REFURBEXISTING5-METER
IS OTIONAL

K BAND

40-13 PPH

BASELINECOMMONDESIGN

EDGECANTILEVER

BEANDOMINATED

RETRACTIONNOT DEVELOPED.
NOT REQUIREDFOR OPERATIONAL
SYSTEM

OPTIONAL

PRECISION2-AXISGIMBAL
OPTIONAL

REQUIREDFOR STRUCTURAL
DYNAMICSTESTS

OPTIONAL

SYSTEMALREADYAVAILABLE

LASERSCANSYSTEM,
ADJUSTSPIDERPOSITIONS

OPTIONAL

BASELINEINCLUDESRF TESTING

FOR VERIFICATION

The detailed hardware objectives for this experiment were to develop, evaluate and select a generic

deployable reflector/beam configuration representative of systems-level concepts applicable to near-

term space missions. The hardware design should be adaptable to a wide range of experiment

applications yet use a building-block approach for growth and retest capabilities for both ground

and flight testing. Systematic trade studies were performed in selecting the generic configuration.
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In addition, a total systems package, not just a structures experiment, was sought using proven

hardware concepts. Controlled automatic deployment of the structure, with possible total

retraction, was examined with the major criteria of being compatible with STS safety and interface

requirements. Use of existing material database for the deployable truss structures and support

systems hardware with relation to STS and space environment compatibilities was included as part

of the design evaluation.

A primary goal of this study is to identify new structures technology issues required to meet the

objectives of the planned ground and flight experiments.

2.2.5.1 Truss Structures Design Requirements. To achieve a better understanding of the design

and analysis trade study tasks, we established the following truss structure design requirements.

• High reliability (single/double failure tolerant)

• Meets operational performance requirements

• Zero free-play joints

• Low number of parts/commonality

• Easily automated process of fabrication and assembly

• Low weight

• No special tools required to construct or repair

• Low rotational forces-friction

• Reflyable (beam only)

• Remotely deployed/no EVA or RMS assist.

• Low stowage volume and low packaging ratio

• Interchangeable subassemblies/detailed parts

• Sequentially deployed and retracted

• Easily inspectable/repairable

• Redundant load paths

• Accurate/repeatable positioning

• Ground testing capability

• Dynamically and thermally stable

• Compatible with STS requirements

These requirements were applied to the three structural elements: reflector, beam and reflector/beam

interface, which make up the ground and flight experiment.
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2.2.5.2 Reflector Truss Structure Selection. The geotruss structures accommodate two basic

mounting options: center attachment and edge attachment. Variations of these concepts include the

number of attachment points required to satisfy mission performance requirements and the mating

spacecraft interfaces.

The geotruss reflector is unique because it can be edge-mounted for offset configurations while

providing a relatively high structural frequency. The edge-mounted configuration was selected

because it requires fewer structural elements (less weight), simplified interface mounting, and

allows for simplified offset reflector design. Several geotruss reflectors were developed,

fabricated and tested, which provides an excellent design database. The beam truss, when

attached to the reflector, provides additional structural complexity in the experiment.

2.2.5.3 Beam Truss Structure Selection. The function of the beam is to deploy the attached

geotruss reflector into the proper position with respect to the orbiter and associated experiment

systems. The prescribed orientation of the reflector shall be maintained during subsequent pointing

and dynamic excitation testing. Possible retraction of the beam and the reflector is the most

demanding criteria identified in the program.

An initial study was conducted to identify deployable truss beam concepts suitable for the ground

and flight experiment applications. A survey of existing and proposed mission applications was

conducted to identify design criteria. These criteria were arranged into groupings based upon what

aspect of the truss beam mission they are critical for and what parts of the design process they

affect. Based upon these considerations, the design criteria for deployable truss beams

were arranged into six categories as follows:

• Space Environment Compatibility

• Operational Performance Requirements

• Launch Performance Requirements

• Material and Manufacturing Considerations

• Deployment Mechanism Interface

• Payload/Utilities Integration

This list was provided as an initial starting point for determining design considerations.

Truss structure construction methods were identified as falling within two basic groups: solid-strut

construction and prestressed construction. Solid-strut construction uses fixed length strut

members with mechanical hinge points that provide desired structure folding. Basic construction

members include hinged struts, telescoping struts and fixed-length struts. Prestressed construction
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usesacombinationof solid-strutmembersandtensionmembersthatstabilizethestructure.Basic

constructionmembersincludetensionwires,strapsandrods,in additionto anyof thesolid-strut
memberslistedpreviously.

The initial evaluation of construction options identified many fabrication concerns and operating

issues with concepts using the prestressed methods. Solid-strut construction provides greater

confidence that structural properties will remain as modeled throughout ground and flight testing.

Concepts incorporating prestressed construction were eliminated for the remaining studies.

The truss beam configurations suitable for this experiment are shown in Figure 2-20, which

consist of three- and four-longeron construction. In this figure we also illustrate the methods

considered for deployment and retraction.

Each remaining candidate was evaluated as to the different types of retraction methods that could be

applied. Obvious limitations were identified that did not allow specific truss beam geometries to

comply with all methods of retraction studied. Some of these limitations are:

• Joint design complications

• Inefficient packaging ratios

• Physical geometric limitations

• Difficulties of integrating deployment mechanisms, reflector, and utilities

• Excessive weight

In selecting among these configurations, the initial choice was based upon high reliability and

functional concerns. Three longeron beams are statically determinate. They are thus single-failure

intolerant. The redundant four longeron beams, which are more likely to be used in an operational

scenario, were selected for the baseline beam configuration.

Of the four longeron beams, the box truss beam configurations require many more structural

elements (more weight) to interface to the geotruss reflector. A more complex interface design

would be required to accommodate this configuration. In past studies the diamond truss beam has

been verified by analysis to provide higher torsional capabilities than the box truss beam. Due to

less complex interfaces, the diamond truss beam was selected for this specific experiment

application.

The deployed geometry of the diamond truss beam fully exploits the benefits of triangulation,

which gives the structure a high degree of stiffness and structural efficiency. There is a degree of
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Figure 2-20. Selected Truss Beam Configurations
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structuralredundancybecauseanymembercanberemovedfromeachbaywithoutlossof
structuralintegrityof theremainingstructure.Theselecteddiamondtrussbeamisconstructedwith

equalstrutlengths.Preliminarysizingof thebaylengthswerebasedon theloadingconditions

identifiedin Section2.2.5.8,loadingconditions-deployed.Initial analysisindicatedthata914.40
ram-longstrutby 25.40mmoutsidediameterby 1.53mmwall thicknessfabricatedfrom

intermediatemodulesgraphite/epoxywasasufficientstartingpointto beginthedesigneffort.

Onebasicof deploymentconceptcanbeeasilyappliedto thediamondtrussbeamdueto its
geometricconfiguration.Thismethodconsistedof stowingthetrussbeambypackagingit directly

alongthecenterline,commonlyreferredto ascenterlinedeployment.Thefour longeronsare
hingedin themiddleto giveeachbaythecapabilitytofolddirectlyalongits owncenterline.

2.2.5.4Reflector/Beam I.nterface Truss Structure. In the two previous sections we have identified

the edge-mounted, offset, geotruss reflector and the diamond truss beam as the two major

structural elements requiring integration.The reflector/beam interface structure evaluation and

development flow is shown in Figure 2-21. This flow chart shows the various steps and decision

points in the design process and the design requirements that must be considered at each step.

__,Tq_F_.FLEC TOP_'TRUSS 8EAM_

_ERMALYNAMICREQUIREMENTSJ_"

NST_AINTS_

___'POI_TIN_POSlrlON"L___._
LACCURACY J

bDEPLoYMENT METHOJ

J_ASELIN E _ _ " r.
r.ONFI_, ,RATI_.,o I_ SELECTED _ONCEPT AN_

L_TOWEDIGE=LCYEDTLO.V=LOP= rOR STuDY ")

Figure 2-21. Reflector/Beam Interface Structure Evaluation and Development
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Evaluationof pastreflectorsupportstructuresdevelopedfor thegeotrusshelpedidentifyedge

mountinginterfaceconcepts. The number of attach points to the geotruss reflector nodes is

dictated by the multiple tetrahedral bays that can accommodate either three-point or five-point,

edge-mounted structural systems. A three-point, edge-mounting interface to the geotruss structure

was selected over the five-point, edge-mounting system because the three-point system provides

adequate support for loading conditions identified, has fewer structural members, and allows easier

structural integration to the diamond truss beam and geotruss structure.

Determining the method of construction was the remaining design issue. Three general methods of

construction for edge-mounted reflector systems were identified:

• Total truss structures interface

• Hinged-fixed frame interface (A-arm concepts)

• Combination of truss and pretensioned structures interface

Hinged-fixed frame concepts have been ksuccessfully developed in the past. Figure 2-22 shows

hinged fixed-frame concepts for both three- and five-point edge mounting that have been

fabricated and tested. Although they provide excellent deployment control and stiffners, the

hinged-fixed frame concepts are difficult to integrate with a deployable beam.

-./_ .... _-_-_7;....... -.

FIVE POINT EDGE HDUNTSYSTEMs

THREE POINT EDGE HOUNTSYSTEM

Figure 2-22. Hinged Fixed-Frame, Edge-Mounted Systems
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Totaltrussstructuresinterfaceusefixed-lengthstrutmemberswithmechanicalhingepointsthat
providedesiredstructuresbreakdown.Basicconstructionmembersincludedhingedstruts,

telescopingstruts,andfixed-lengthstruts.

A combinationof trussand pretensioned structures interface use solid-strut members that are

stabilized by tension members within the structure. Basic construction members included tension

wires, straps, and rods in addition to the solid-strut members.

The evaluation of construction options identified many fabrication concerns and operating issues

with concepts using the pretensioning methods. Total truss structure interface construction

provides greater confidence that structural properties will remain as modeled throughout ground

and flight testing. Thus our analyses ruled out the use of concepts incorporating pretensioning

construction. A total truss structure interface between the diamond beam and geotruss reflector

was selected as the baseline.

2.2.5.5 Geo Truss Analysis .Co0e. The geo truss structural geometry, mass properties, parts

count, package size, graphics, and NASTRAN model generated with the General Dynamics

Tetrahedral Truss Synthesis Program (GDTI'SP). Through the use of this program, numerous

geotruss configurations were created and analyzed to arrive at the final configuration.

Figure 2-23 illustrates the process through which a geotruss configuration is derived in the early

design phases. Design parameters such as RF diameter, F/D ratio, percent offset, strut tube

thicknesses, etc. are fed into the GDTTSP program. GDTrSP performs the geometry definition,

preliminary strut sizing, mass properties analysis, package size analysis, and part-count analysis.

GDTrSP also outputs graphic displays of the configuration geometry, and outputs NASTRAN

data sets for both static deflection and modal analysis.

Figure 2-24 illustrates structural, thermal, and RF analysis programs that interface with the

GDTTSP program to provide a broad-based antenna analysis capability. In particular, GDTTSP

geometry files were used to interface the MESH surface RMS analysis program for RF

performance analysis, and GDTI'SP NASTRAN interface files were used with NASTRAN for

structural analysis.

2.2.5.6 Deployable Truss Structures Baseline Configuration. At this task level the objective was

to evaluate different structural configurations for deploying and supporting a reflector/beam

experiment from the STS cargo bay. Having selected the type truss construction, the next step was

to establish the size and mass of the reflector for sizing of the beam and interface structure.
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Figure2-23. GeotrussDesign withGDTTSP Program

A major designgoalwas toestablishstructuralcommonality between testarticlesthatwould lower

overallexperimentcosts.First,designing,analyzing,and fabricatingjustone common diamond

trussbeam foralltestswould significantlyreducehardware cost.The common diamond truss

beam issizedforthelargestreflector.This ensuresadequatestructuralperformance and safetyfor

all experiment testing.

Secondly, by sizing the two proposed reflectors to use common structural elements, an additional

savings in tooling and assembly fixturing can be achieved. For this experiment a lye-meter

diameter, four-bay geotruss refector, shown in Figure 2-25, and a 15-meter diameter, 12-bay

geotruss reflector shown in Figure 2-26 were selected.
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'--'-" 5 HETER OIAMETER, 4 BAY,GEO-TRUS$ REFLECTOR
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Figure 2-25. 5-Meter Reflector Configuration

NOTE:

• DIMENSIONS ARE BETWEEN

NODE CENTER POINTS.
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Figure 2-26. 15-Meter Reflector Configuration
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A preliminary design was developed for an edge-mounted deployable truss interface between the

geotruss reflector and the diamond truss beam, shown in Figure 2-27. This interface structure acts

as a two-dimensional torque frame that provides the support between the diamond truss beam and

the geotruss reflector. The torque frame provides interfaces that were optimized during the

preliminary design to accommodate the structural configuration of the two mating structures The

frame also provides a rigid interface that can react all ground, launch, deployment, and operational

loads. This is accomplished by joining the reflector support nodes to the truss beam node fittings

with fixed-length, hinged, and telescoping struts.

1S METER DIAMETER, 12 BAY, GEO-TRUSS
REFLECTOR

COMMON-
DIAMOND TRUSS
BEAM_

COMMON-TIIREE POINT, /.,_
EDGE MOUNT, INTERFAC

Figure 2-27. Beam Reflector Interface

During the preliminary design phase, final dimensions for the interface structure were established

and a basic approach was taken as to the positioning/orientation of the reflector to the truss beam.

The reflector was placed symmetrically to the centerline of the truss beam and perpendicular to the

truss beam longitudinal axis. The spacing of the reflector to the truss beam was based on sufficient

clearances to package and deploy the reflector's outriggers and mesh system.
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Theperpendicular positioning of the reflector to the beam's longitudinal axis is variable by

changing the length of the telescoping strut. This may be used to accommodate desired R/F feed

positioning requirements or fine-tuning angular adjustments between the truss beam and reflector.

2.2.5.7 Reflector/73eam Stowed Configuration. The packaged configuration was driven by the

payload diameter envelope of the Shuttle cargo bay. The reflector and interface structure are

retracted onto the end of the stowed diamond truss beam. This is accomplished by hinging three

interconnecting struts and retracting one telescoping strut. Figure 2-28 shows the retracted

configurationsofeach structuralelement.

}WED REFLECTOR

MESH r_REFLECTOR-
/ UPPER SURFACE

ECTOR- / NODE FITTING

OUTRIGGER/
/ ._--'REFLECTOR- -_'J

/ LOWER SURFACE_
NODE FITTINGS

TOP VIEW

STOWED REFLECTOR/
BEAM

----'--A

SECTION B-B SECTION A-ASTOWED INTERFACE STOWED DIAMOND
TRUSS STRUCTURE TRUSS BEAM B A

Figure 2-28. Reflector/Beam Stowed Configuration

2.2.5.8 Loading Conditions Deployed. The fully deployed truss structures were assumed to be

under wanslational and rotational accelerations of the Space Shuttle Primary RCS thrusters. The

translational accelerations used were 0.18, 0.21, 8.4, 0.39 m/see 2 in the X, Y, and Z directions,

respectively. The rotational accelerations used were 0.021, 0.026, and 0.014 rad/sec2 about the

X, Y, and Z axes, respectively.

2.2.5.9 Structural Analysis. A preliminary structural analysis was conducted on the reference

configurations for the deployable, four-longeron, diamond truss beam. This analysis was intended
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todeterminethebehaviorof thestructureunderoperatingloadsandto verify thestrengthcapability

of thetrussstructurecomponents.Theprimarymethodusedin thisanalysiswasthecreationof a
detailedfiniteelementmodelof thestructures.A modelwascreatedof a 16-bayconfigurationto
determinetheeffectof reflectorsizesontrussbeambehavior.

Themodelincludedelementsrepresentingthecomponentsof thetubulartrussstructureof the
selecteddiamondbeamconfigtwations.The longerons were represented by bar elements that

contained bending and axial stiffness. The diagonals and battens were represented by rod elements

that incorporated axial stiffnesses only. Separate mass elements were included at each node point

to represent the node and hinge fittings of the truss beam. The effects of the antenna mass on truss

beam behavior were represented by a mass element at the center of gravity of the antenna, which

was connected to the main truss beam with rigid bar elements.

The des!gn load conditions resulted from operation of the Orbiter Primary RCS thrusters. These

conditions were represented in the finite element model by applying translational and rotational

acceleration factors. The resulting inertial loads, deflections, and internal loads on the truss beams

were calculated by the finite element program.

The critical design points were for maximum deflection at the tip of the truss beam and maximum

axial loads in the longerons at the base of the truss beam. The maximum deflection at the tip of the

truss beam for this loading condition is 2.94 cm.

The minimum margins of safety were calculated for the longerons at the base of the truss beam.

These members consist of tubes of ultra-high modulus graphite epoxy connected to the nodes by

hinged connections. The critical-failure mode is Euler buckling of the member acting as a pinned

ended column, The minimum margin of safety was determined to be +0.45 for the worst-case

compression loading using a 1.40 safety factor.Strut diameter was 25.40 mm (outside diameter)

with a 1.53 mm wall thickness.

2.2.5.10 Experiment Support Structure Design Requirements. The selected interface between the

flight experiment and the STS cargo bay is the STEP Dedicated Support System. The structural

interface between the experiment and the STEP pallet is a frame that reacts all pitch, roll, and yaw

loads during all flight phases.

The following general requirements were identified for the experiment support structure:

• Compatible with STEP interfaces
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• High stiffness

• Contained within dynamic envelope of orbiter cargo bay

• Allow for avionics and experiment subsystems integration

• Statically determinant hardpoint mounting

• Use standard STSS hardpoint interfaces

• Supports deployment systems

• Compatible with orbiter and experiment operations environments

• Provides experiment rotation capability at STEP interface

• Provides for beam retraction and stowage after reflector jettison

Figure 2-29 illustrates the overall support structures network with relation to the stowed 15-meter

reflector/beam experiment. The primary interface surface is located on the underside of the support

structure frame. The frame interface with the STEP pallet incorporates the standard hardpoint ball

and socket fittings. This combination of hardpoint locations on the support structure provides a

statically determinant interface to the STS STEP pallet. Load transfer into the STEP pallet was

analyzed to verify compliance with the Structural Interface Document for the pallet (Spacelab

Payload Accommodations Handbook, SLP/2104, Appendix B- 1).

,/_ D]At_RD TRUSSBEAN

REFL[CIOR BESI, _ECI_ N /1 ,D,[_,_O_','_,._:_RN';_I;O_¥DR_,V:

• 7/11/I
• '-- "-I

ORBITER CARl BAY _75"1J[.4_4 ....

Figure 2-29 Packaged Experiment to Step Interface

2 - 56



2.2.5.11Material_ Considerations. The selection of materials and processes for this experiment

were important factors in achieving desired performance levels. They also are major factors in the

producibility and cost of the overall system. As with all flight hardware, low mass is important to

reduce overall launch costs especially when experiment reflight is a consideration..

The space environment imposes severe constraints on the choice of materials. Materials were

selected that have low moisture absorption, can withstand hard vacuum without outgassing, and

withstand the eroding flux of charged particles and atomic oxygen without degradation. To

prevent electrical arcing and associated RF noise, electrical charges cannot be permitted to build up

on surfaces. The materials of the assembly hardware must withstand repeated thermal cycling

without buildup of micro-defects and the associated losses in strength and stiffness.

Truss structures dimensional stability through low CTE, high specific strength, and stiffness is

required. The experiment structure will experience a wide range of operating temperatures and the

effects of localized shadowing. Due to the stringent requirement for positioning and pointing

accuracies, the structure uses graphite/epoxy struts to achieve near-zero overall CTE to minimize

the thermal induced distortion.

2.2.5.12 Utilities Integration Design Requirements. Provisions for utility subsystems are required

at several locations throughout the experiment package. Installation points consist of STEP pallet -

mounted, orbiter-mounted, and truss-structures-mounted utility subsystems, consisting of the

following;

• Dynamic controls and actuators (pitch, roll, and yaw)

• Avionics

• Instrumentation

• Power amplifiers

• Ordnance initiation systems (pyrotechnic separation devices)

• RF equipment

• Safety equipment

• RMS grapple f_.xture and target

• Bus interface units

• Utility lines, cable trays, source connections and interconnections

• Equipment mounting platforms and standoffs

The main requirements for utilities integration are reliability, high performance, and low cost.

Reliability includes elimination of cable straining during deployment and retraction, and minimal
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number of connections or joints that will not degrade operations of deployment/retraction cycles or

truss structures lock-up.

Performance includes protection from adverse environments (thermal, radiation, vibration) and

elimination of electrical interference by separation of power and data/signal equipment, without

affecting experiment packaging efficiencies.

Cost considerations include: accessibility for end-to-end checkout for ground and flight tests in

both the retracted and deployed configurations, ease of installation, maintenance, and replacement

using standard tools.

2.2.5.13 Control Systems Installation. Excitation and damping of the experiment is provided by

flight-proven torque actuation wheels (rate gyro units). The reaction wheels, including power

amplifiers, ordnance hardware, instrumentation, and avionics components are located at the tip of

the diamond truss beam. Three of these units are used to provide pitch, roU, and yaw (X,Y, and

Z) forces.

The structural interface for these units includes mounting provisions for all associated equipment in

both the stowed and deployed configurations, as shown in Figure 2-30. This mounting structure

Ol='/'lON 1-NIGH I"GqQUE DESIGN

TOTAL WEIGHT 22.£=8 kg EACH
QTY. (3)

V___y" . {_

'. ,ii_ _D%%,o.

"L '" ' '' ..... J

STOWEO
OVERALL EXPERIMENT CONFIGURATION
TEST CONFIGURATION

Figure 2-30. Mounting of Rate Gyro System
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must match the CTE of the truss beam in all radial directions to ensure no adverse effects on the

diamond beam and the interface structure.

Accessibility to all units and associated equipment in both the deployed and the stowed positions

was required so that maintenance such as removal and replacement, checkout tests, and repair can

be performed with using standard hand tools.

2.2.5.14 Pyrotechnic Separation System Installation. If the beam fails to restow, an emergency

separation and jettison is provided to restore the orbiter to a safe operating condition. Figure 2-31

shows the two pyrotechnically activated separation points within the experiment. These separation

points are part of the baseline experiment hardware configuration. The failure modes and

operational test sequences identified have been satisfied with two pyrotechnic separation methods

- ,q'_l

,d_ / / / / ,_r_RFACESmucruREmOM_E

_ | ._g'---_'--[ _'1\ /------ ExP_RfM_cr

\ / ----. \ " " " , ---i\
• " "" " / ipy'TOTECHNIG.GUILLOTINE I _// ,..1 "'-..._. "_" .i / I I _'"

rNP ,P_cEs) ,;.-,l)Ill/" JJ EXPE,,M_PtArFO,M"_/,,_%.,'" II ]l.tT----- _')
( I L / "nE_w_uPtvo'r .. _I ]/r /

CABUNG PALLET FUNCTION - TOTAL EXPERIMENTSEPARATION RETRACTOR

FROM STEP PALLET (TYP. 4 PLACES)

Figure 2-31. Experiment Pyrotechnic Separation System

For flight experiments the geotruss reflector and the interface structure will not be retracted and

restowed into the STS cargo bay for return to Earth. The geotruss reflector separation point is at

the end of the diamond truss beam. The separation occurs by activating three pyrotechnic, low-

shock separation nuts and a cable cutter for utility line separation. Structure separation fittings are
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locatedonone apex node fitting and two base node fittings of the diamond truss beam. This

separation system location provides reflector and interface structure separation from the beam at the

completion of the on-orbit testing or at any other time during the experiment.

The entire truss structure experiment is jettisoned by activating the pyrotechnic system at the base

of the truss beam support structure platform. This separation plane has been established as the

interface points to the STEP pallet. Total experiment separation from the STEP pallet is achieved

by pyrotechnic pin retractor located at all structural interface points. Utility lines from the STEP

pallet to the experiment platform are severed by a pyrotechnic cable cutter.

Experiment removal from the STS cargo bay is accomplished by RMS support. This approach

was selected for the experiment due to cost, safety, and reliability. RMS interface provisions for

the entire experiment (experiment platform, beam, interface and reflector), and the tipmass

(interface and reflector) are provided by attaching RMS grippling fixtures and targets to the beam

and reflector structures.

2.2.5.15 Experiment/STS Cargo Bay Layout Options. The required interfaces between the

reflector/beam experiment and the STS include power, data, control, and mechanical. This study

concentrated on the STS structural and mechanical capabilities to support the flight experiment

using existing support hardware (i.e., STEP pallet and MPESS pallet).

During the experiment the crew members must work in the Aft Flight Deck (AFT) to initiate and

monitor test operations and to operate the RMS. The physical location of the experiment within the

cargo bay in relationship to the aft control station and the associated cargo bay support equipment

have been considered. Failures during the experiment need to be assessed by the crew by using

both actual line-of-sight verification and remote camera detection. Therefore, placement of the

experiment is an important consideration for operational testing and safety concerns.

Crew EVA egress requires a minimum clearance of 1.22 meters between the experiment, and on

the experiment require EVA clearance of 1.22 meters from the crew compartment hatch of the

cargo bay. This limits the experiment location within the cargo bay.

A major driver in identifying and selecting the optimum cargo bay layout for the experiment is the

capability to deliver additional payloads as part of the launch manifest. Figure 2-32 illustrates

three-cargo-bay layout options in both the stowed and deployed configurations.

2 - 60



'

zzy t,,,,
DEPLOYED DEPLOlfED DEPLOYED

CONE'I GURAT ] QN CONF [ GURAT [ ON CONF [ GURAT] ON

SIOMED STOWED STOWED

CONE I GURAT ! ON CONE! GORAr ION CONF I GLIRAT [ ON

FIXED ROTATIONAL FIXED
_JI_AR Pd_ITION|EG PERP_NU[CULAR

PROVIDES PIAXIHUN EXPERIIIEN|
f'l I Ylllil t IY

Figure 2-32. Experiment Position Options Within STS Cargo Bay

The fixed angular position and the fixed perpendicular position experiment configurations do not

comply with the criteria identified. The loss of cargo bay volume due to required experiment

configuration hamper additional payload possibilities.

The deployed and stowed configuration of the fixed angular position requires the experiment to

protrude into forward and aft adjacent spaces. In order to maintain adequate safety margins,

forward and aft payloads would require large separations from the STEP pallet and the experiment.

The fixed perpendicular position of the experiment requires separation of the experiment package.

The actual truss structures experiment mounted on the STEP pallet is placed aft in the cargo bay.

The associated test equipment is mounted forward creating a large separation for all interface

systems. Line-of-sight of the experiment from the AFT becomes impossible once a payload(s)

container is located in the mid-cargo bay section. Any failure mode of the truss structure,would

impose great danger to the orbiter's tail section,

The rotational positioning experiment configuration was selected because it best suits the criteria

identified for this flight experiment. Consolidation of all experiment hardware and STS interfaces

simplifies cargo bay processing and installations. Obstruction of other payloads are minimized by
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forwardplacementof the experiment in the cargo bay. Crew egress and EVA clearances are

maintained. Line-of-sight from the AFT is possible during all phases of on-orbit tests.

2.2.5.16 Experiment Deployment Methods and Sequence. Deployment methods and sequencing

are primarily driven by safety issues, mission requirements, and launch vehicle constraints.

Various deployment sequences can be implemented for the structural configurations identified for

the 5- and the 15-meter refiector/beam experiment.

Deployment mechanisms are required for experiment retention, release, deployment drive, truss

structures lock-up and beam retraction. Mechanism concepts were evaluated in the areas of

function, weight, reliability, and simplicity. A common goal of all deployment functions is slow,

controlled, and reliable methods to achieve the desired levels of experiment configurations. All

truss structures and support structures must work integrally with all deployment control systems.

Operational deployment issues and how they should relate to the on-orbit testing were addressed

first. Consideration was then given to orbiter compatibilities such as safety, payload interfaces,

and the manned environment. High reliability drove the requirements for fail-safe, dual-failure

tolerant, and redundant design approaches. Deployment mechanism design requirements as they

applied to the ground/fiight experiment are as follows:

• Automatic deployment in space and automatic or manual deployment on ground

• Automatic retraction (beam only)

• Controlled deploymenff(retraction)

• Strength of truss maintained at all stages of deployment

• Suitable for use with add-on structures and utilities

• Efficient packaged volume (compact)

• Low power consumption

• High reliability (single/double failure tolerant)

• Suitable and safe for EVA operations in the event of malfunction

• Able to generate extra force in the event of a hang-up or jam

• EVA/RMS back-up capabilities

• Compatible with reflectorfmtefface structure jettison

The selected deployment method for the diamond truss beam is a continuous electromechanical

drive system. The drive source is integrated with a track and belt drive system that contains the

beam during stowage, deployment, and retraction. This mechanism is integral with the support

structure. Controlled sequential deployment is provided for the truss beam. The beam unlock and
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retractioncapability is provided within the same system that operates in reverse of the deployment

sequence. Strut folding is achieved by tripping the lock mechanism on each folding strut.

The reflector/beam interface structure is deployed integrally with the diamond truss beam and the

geotruss reflector. In this concept, the deployment motions for the interface structure is established

by the deploying geotruss structure. Final lock-up of three interfacing hinged struts are provided

by the locking hinge mechanism. A linear actuator operates the telescoping strut. The deployment

stroke required from the retracted to the deployed position is approximately 6.09 era.

Controlled deployment methods for the geotruss reflector has been studied in depth. The optimum

approach is to deploy in a controlled synchronous manner using continuous electromechanical

drives in conjunction with linkage or gear interfaces with the deploying struts. These deployment

drives are locked at selective node fittings. The geotruss reflector deployment energy is provided

by carpenter-tape hinges in the center of all surface struts. The hinges act as basic folding element

and the drive mechanism. Once released it deploys into a positive locked configuration.

A step-by-step deployment sequence of the reflector/beam experiment is shown in Figure 2-33.

The steps are as follows:

Step 1: The total experiment is retained for launch on the step pallet. The diamond truss beam is

retracted along its longitudinal axis in a single-fold (stowed position). The interfacing structure is

collapsed and nested between the geotruss and the diamond truss beam.

Step 2 : The release of the mesh containment deuce is activated by the first motions in the

experiment platform rotation. As the distance increases from the reflector mesh and the mesh

containment device in separation forces become higher until mesh release, (i.e., velcro peel effect)

rotation of experiment platform is activated by a redundant actuator drive system.

Step 3 : Release of the retention devices that secure the diamond truss beam are actuated. Truss

beam deployment begins.

Step 4 : Diamond truss beam deployment is complete. Release of the retension devices that secure

the interface structure to the truss beam are activated. Partial interface structure deployment is

achieved. The interface structure telescoping strut is fully deployed and locked in conjunction with

the two timed struts that establish a fixed upper surface node point on the geotruss reflector.

Step 5: The geotruss containment systems is actuated. The geotruss reflector is allowed to deploy

in conjunction with the remaining three hinge struts of the interface structure.

Step 6: Deployment of the geotruss reflector is complete as well as the entire interface structure and

the diamond truss beam.
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2.2.5.17Selected Baseline Experiment/STS Cargo Bay Configuration. The baseline for the

reflector/beam.flight experiment .hardware is characteristic of generic large deployable truss

structures with unique capabilities to support a comprehensive research program. The design

approach is suitably configured to meet all experiment requirements.

The proposed two flight experiment uses two different-sized reflectors: a 5-meter (four-bay) for the

first flight, and a 15-meter (12-bay) for the second flight. Reflector design commonality was

selected to reduce the costs over a two-flight program.

Both flight experiments use a common diamond truss beam and the associated mechanisms,

retention system, and support structure. The beam deploys from the STS cargo bay with the

reflector mounted at the tip. Once the flight test program is complete, the reflector is jettisoned and

the beam is retracted and restowed for return and reuse.

The reflector/beam interface structure is the same configuration for both flights. Jettison of both

reflectors occurs at a separation plane between the diamond truss beam and the interface structure.

A simple three-point, edge-mounted truss structure interface was selected to mate the reflector and

beam.

The diamond truss beam is sized to support the larger 15-meter reflector under the worst -case

loading conditions. Figure 2-34 shows the experiment in the deployed configuration. Figure 2-35

shows the experiment in the stowed position within the orbiter cargo bay. With this configuration

experiment processing and testing can be performed on a non-interference basis with other

payloads.

The selected flight experiment approach is adaptable to a wide variation of payload manifests and

growth options and makes use of existing orbiter support equipment to minimize experiment costs.

2.2.5.18 Mass Properties. Preliminary estimates of the mass properties of all experiment system

elements for the 5-meter and 15-meter reflector flight test hardware.is summarized in Table 2-14.

The estimates do not include STS support hardware. Mass properties have been updated as

alternative and modified designs were developed that lead to the baseline configuration. This data

has been used in the computer simulations to establish overall systems dynamics. Total weight of

the 5-meter reflector experiment is 928 kg, and the I5-meter reflector experiment is 1173 kg
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Table2-14.ExperimentMass Properties

5 METER GEOTRUSS 15 METER GEOTRUSS
REFLECTOR REFLECTOR

GEOTRUSS REFLECTOR 39 kg (87 Ibs) 250 kg (552 Ibs)

GEOTRUSS REFLECTOR MESH 132 kg (290 Ibs) 166 kg (365 Ibs)

i- CONTAINMENT SYSTEM .
................................ _ ................. t ..................

GEOTRUSS REFLECTOR 59 kg (130 Ibs) 59 kg (130 Ibs)

RETENTION/SUPPORT

""b_i_o'.'_i_u'ss';_i_".............. ;i;;'t;;_ ;b'_;...... i;_ i;_'3"_).......
i ................................. • ................. i ..................

DIAMOND TRUSS BEAM DEPLOYMENT/ 268 kg (590 lbs) 268 kg (590 Ibs)

RETRACTION DRIVE MECHANISM

DIAMOND TRUSS BEAM RETENTION/ 67 kg (147 Ibs) 67 kg (147 Ibs)

SUPPORT STRUCTURE

RF FEED HORN 5 kg (11 Ibs) 5 kg (11 Ibs)

'...,.FyyE.?p.o.,..,su.P.Po,5.............. .34,?(77._b:!...... 1.3L ,y.(j.,.Lb_)........

EXPERIMENT ROTATION PLATFORM 239 kg (528 Ibs) 239 kg (528 Ibs)
AND ACTUATOR DRIVE SYSTEM

INTERFACE STRUCTURE 11 kg (25 Ibs) 11 kg (25 Ibs)
I

TOTAL (DOES NOT INCLUDE STS 928 kg (2045 Ibs) 1173 kg (2585 Ibs)

SUPPORT HARDWARE)

2.2.6 AVIONICS/INSTRUMENTATION DEFINITION. The flight experiment

avionics/'mstrumentation definition is predicated on a 1992 flight date for the 5-meter geotruss

reflector. This early flight date mandates the use of mostly proven avionics/instrumentation

technology.

2.2.6.1 Avionics/Instrumentation Requirements. The basic experiment measurement/control

requirements fall in the areas of contour measument, shape control, defocus measurement, and

pointing measurement. These requirements, which establish the basic radiated RF field wavefront

accuracy, are summarized in Table 2-15.
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Table2-15.ExperimentMeasurement/ControlRequirements

Contour Measurement

- RMS error of 0.6 mm at 10 GHz results in 1.2dB gain loss and 10 dB side

lobe increase.

- 1.5 mm RMS error gives 6.8 dB gain loss and higher side lobes.

- Higher frequency operation (14-30 GHz) requires smaller RMS error

(0.02_,).

Measurement sample rate to provide bandwidth adequate to sense

contour dynamic deflections.

Shape Control

Utilize contour measurement displacement data for shape control

effectiveness.

Defocus

Defocus tolerance of 3.0 mm (0.22L) at 20 GHz.

Pointing

- Pointing tolerance in the order of 0.01 degrees for 20 GHz and 15 m

reflector diameter.
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These basic experiment measurement/control requirements are the basis for desired requirements in

the areas of operational constraints, operational implementation, operational hardware, and

operational hardware implementation. These requirements are summarized in Tables 2-16 - 2-19.

Table 2-16. Measurement/Control Operational Requirements

Structural Dynamics

- Even passive damping requires instrumentation to evaluate behavior.

- Passive damping needs excitation actuators.

Both passive and active damping shall be demonstrated and assessed.

- Strain measurements shall be provided at locations given in Figure

2-36 (SG - Strain Gauge).

Shape Control and Measurement

- Thermal differential temperature measurements are more critical

than absolute temperature accuracy.

- Thermal data may be used to compensate for temperature effects.

Temperature sensor locations identified in Figure 2-36

(T-temperature sensor).

- Number of shape control actuators are reduced with structure spider

design.

Gimbal Pointing
- Use RF field measurements to calibrate antenna pattern versus

gimbal angle.

Provide gimbal angle position sensor.

Beam/Reflector Deployment

Open loop deployment sequencing. No closed loop automatic control

required. Time duration not critical.

Actuation position and limits monitoring by observer instumentation.

Observer initiation and over-ride capability.

- Reversible operation to apply only to beam element.

- Provide failure detection (temp, volt, etc).

- Jettison capability for beam retraction failure.
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Table 2-17. Operational Implementation Requirements

Shape Control

- Shape control actuator position instrumentation data will be useful for test

result analysis.

Thermal/Strain Measurement

- Minimize low level signal run lengths with. appropriately, placed Bus

Interface Units (BIU - Figure 2-36).

Provide equipment temperature sensing.

Recording

Deployment data recorded.

- Pointing commands and pointing position sensor data recorded.

Contour measurement data recorded.

Thermal data recorded.

Shape control actuator commands and position data recorded.

- Passive/active damping actuator commands, measurement data, actuator

performance recorded.

- Strain data recorded.

General

- Use single string hardware (except where redundancy insures safety).

- Use data acquisition response and protocol, which insures adequate

sensor sampling rates and time correlation.

- Provide flexibility for modifications.

- Use ADA as the Higher Order Language (HOL)

- Provide interface compatibility testing prior to STEP and experiment

mating.

- Follow NASA procedures for Orbiter experiments.
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General

Table 2-18. Operational Hardware Requirements

iJse off-the-shelf or modified hardware wherever feasible.

Use serial data bus to minimize copper, weight, and bending deployment

stresses.

Use STEP hardware to maximum advantage (recording, power control,

etc.).

Use GFE STEP hardware for ground tests also.

Provide EMI and transient protection features.

Comply with all STEP, Orbiter, and TDRSS interface requirements

(electrical, thermal, mechanical, structural).

Table 2-19. Operational Hardware/Implementation

Contour Measurement
- Use Photogrammetdc Camera Subsystem (PCS) for primary contour data.

Provide a low cost. alternative, real time. exDerimental Laser Scan
Subsystem (LSS) as test of alternative method.

- Measure from focal point for photogrammem/and from reflector center for
LSS (LSA - Laser Scan Assembly, LST - Laser Scan Target, Figure
2-36).
LSS contour data recorded on STEP recorder, and photogrammetry data
on camera film.

Shape Control
Use micro-motion actuators for shace control.

Use STEP recorder for all pertinent data for later data correlation.
In general use platinum wire thermal sensors with common sw=tch current
injection.

Structural Dynamics
- Active clamping will employ rate gyro sensing encl rotating inertial torque

actuators (RGU - Rate Gyro Unit, PAA - Primary Actuator Assembly, Figure
2-36L
Use beam and reflector inertial acceleration sensing (ATU - Accelerometer
Triad Unit, Figure 2-361.

- Use the Retro-Reflector Field Tracker (RFT) to measure beam lateral
motions (Figure 2-36).

- Use the LSS beam deflection measurements for performance monitor and
as an eventual low cost replacement for the RFT (LSA, LST, Figure
2-36).

Gimbal Pointing
- Use a Gimbal Drive Assembly with Direct Drive Actuator (GDA, DDA,

Figure 2-36).

Deployment

- Use a Carriage .Drive Assembly with 3 Direct Drive Actuators (CDA, DDA,
Figure 2-36),

Processing
- Provide 1760A processor, and memory for control sequencing, data

processing and transfer, and control alqorithm computation (ESP -
Exoedment System Processor, Figure 2-36).
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Figure 2-36. Control/Instrumentation/Measurement Identification and Locations
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The major functional subsystems and elements and their interfaces are shown in Figure 2-37. A

hardware-oriented block diagram is given in Figure 2-38. In addition to more detail on electrical

interfaces, Figure 2-38 gives the thermal interfaces to the SDSS cold plate. Functions and

descriptions of the various subsystem and hardware elements are described in Tables 2-20 through

2-24. Further detailed hardware component descriptions are supplied in Table 2-25.
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Figure 2-37. Experiment Major Avionics Subsystems and Subsystem Elements
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Table 2-20. Motion Measurement System Avionics

ATU -

RE'r4-

PCS -

LSS -

Accelerometer Triad Unit; triad of accelerometers; located at

reflector tip, 2 units at reflector edges, beam tip, 3 units distributed
along beam, 7 units total; analog outputs to nearest BIU; could be
applied to real time control.

Retro-reflector Field Tracker; star field sensor based optical system
with a base mounted Main Electronics Box (MEB) and Sensor Head
(SH) and 8 beam mounted reflective Scotch type Laser Targets (LT);
data, control, and monitor interfaces to ESP; after flight data analysis;
for beam measurements.

Photogrammetric Camera Subsystem; multiple cameras in gas cans
mounted on RMS; simultaneo.us stereoscopic film imaging of photo
targets; after flight data analysis; for reflector measurements.

Laser Scan Subsystem; a low cost experimental displacement
measurement system for both beam and reflector measurements;
real time data available, could be applied to an active control
system, could replace both the RFT and PCS in subsequent
structural control tests; one Laser Scan Assembly (LSA) at the
reflector center; two LSA's at the base, one x-axis, one y-axis; 20
Laser Scan Targets (LST) on the reflector, 16 LS'i"s on the beam.
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Table2-21. ModularDistributedInstrumentationSubsystemAvionics

MDIS Bus - Serial 1 MBPS bus using modified protocol 1553B for all data
collection other than EDS and MMS data; interfaces BIU's and
ESP.

TMS - Thermal Measuring Subsystem; a mix of thermistor and PRT
temperature sensors; thermistors, 1 in each BIU (7), RGU (1), GDA
1), PAA 1 per wheel and 1 electronics (4), RFT (1), ESP (1), PDU
(1), CDA 1 per DDA (3), total 19; PRT, 12 on the reflector, 14 in two
locations on beam, total 26; all PRT's interface to a nearby BIU;
most thermistors interface to a BIU.

SMS - Strain Measuring Subsystem; a set of structural strain gauges (SG)
located as 4 at each ATU location (28), 2 on 3 structural elements at 2
beam locations (12), total 40; all SG's interface with a nearby BIU.

V-IMS - Voltage/Current Measuring Subsystem; measures all critical power
supplies voltages and currents, actuation drive currents, and pdrne
power voltages and currents; interfaces thru BIU's.

ESP - Shared 1750A processor and shared memory used for collecting
and formatting data, and passing data on to SDSS; shared BIU
controller for MDIS Bus Interface.

Table 2-22. Development Control Subsystem Avionics

CDA -

GDA.-

JSS -

Carriage Drive Assembly; consists of 3 Dual Drive Actuators (DDA)
driven mechanisms, 3 discrete switch sensors, a cardage absolute
position sensor, and a carriage incremental sensor; these all interface
directly with the ESP.

Gimbal Drive Assembly; consists of 1 DDA driven gimbal, 2
discrete switch sensors, and 1 rotary position sensor; these all
interface with the beam tip BIU.

Jettison Separation Subsystem; pyrotechnic devices for jettison of
the reflector and beam; this is hardwired from the SDSS for both
monitor and activation.
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Table2-23. FigureControlSubsystemAvionics

FCA - Figure Control Actuator; a low power slow micro-inch control actuator
at multiple spider locations in the reflector back structure; interfaces
directly with the reflector BIU's; includes position sensor inputs to
BIU's.

PCS - Used to monitor reflector shape; requires film and computer
processing for feedback to FCA.

LSS - A low cost experimental displacement measurement system that can
provide real time feedback for FCA.

Table 2-24. Power Distribution Subsystem Avionics

PDU - Power Distribution Unit; 2 buses instead of 3 as in MAST proposal.

CPB - Constant Power Bus

PPB - Pulse Power Bus
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Table2-25. AvionicsHardwareDescription

Experiment System Processor (ESP) - 1 unit
The ESP is the main processor for the experiment.
In the processor modules, a 1750A processor will be utilized. No co-

processor is required at this time, however a spare module slot shall be
provided for future insertion of a co-processor. The 1750A processor module
shall have on-card cache ROM/RAM.

' There will be at least 512K bytes in memory module(s). In addition, a
spare memory module(s) slot(s) shall be provided.

Primary Actuator Assembly (PAA) - 1 unit
The PAA consists of three inertia wheels and the associated drive

electronics. The wheel size has not been established (either a 90 or a 45 in-lb
size).

Dual Drive Actuator (DDA) - 4 units
The redundant dual motor electric actuator is utilized in 4 mechanisms, 3

for the Cardage Drive Assembly and 1 in the Gimbal Drive Assembly.

Rate Gyro Unit (RGU) - 1 unit
This includes a triad of rate integrating gyros and associated analog

output circuitry, and a power supply operating off 28 Vdc.

Accelerometer Triad Unit (ATU) -
As the name implies, this is a triad of Sundstrand QA 2000 class

accelerometers.

7 units

Retro-Reflector Field Tracker (RFT) - 1 unit
This is a modification of the SAFE Dynamic Augmentation tracker and is

available from Ball Brothers.

Photo-grammetric Camera Subsystem (PCS) -
The PCS has not been designed but is expected to consist of at least two

cameras, with some means of photo-image synchronization, mounted in gas
cans for vacuum operation. The cameras are film type because the available
digital imaging type are not yet high enough resolution.
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Table2-25. AvionicsHardwareDescription(contd)

Laser Scan Subsystem (LSS) - 3 Laser Scan Assembly (LSA) units
& 36 Laser Scan Target (LST) units

The LSS is a low cost experimental real time deflection measuring
system which would replace the PCS and the RFT in future tests and operating
systems. Each LSA would consist of laser diode (2 for redundancy) and the
assot:iated circuitry and power supply, and a rotating penta-prism with drive
motor and power supply. Power requirements are low. The LST consists of a
linear multiple element CCD line scan array integrated circuit sensor, a
threshold circuit, a scan clock circuit, and a binary counter circuit for scan
element identification.

Bus Interface Unit (BIU) - 5 units
The BIU interfaces with the EDS Bus and the MDIS Bus, both of which

are modified 1553B protocol busses. On the actuator command side of the
interface, the appropriate BIU provides command signals to the PAA WDE, to
the GDA DDA, and to the FCA's.

On the sensor side of the interface, the appropriate BIU interfaces with
wheel speed sensing from PAA WDE, RGU rate sensing, ATU acceleration
sensing, GDS angular position sensing, FCA's displacement sensing, 26
structural PRT sensors, 13 unit thermistor sensors, 40 structural strain sensors,

36 LST deflection sensors, and various unit voltage-current sensing.

Power Distribution Unit (PDU) - 1 unit
The PDU has the function of filtering and current limiting the SDSS

supplied 28 Vdc, and distributing it on two buses, a pulse load bus and a

constant load bus, each with filtering. The pulse load bus can accept
regenerative power from the PAA. In addition the JSS pyro signals are
processed thru the PDU.

Figure Control Actuator (FCA) - 5 units
Each FCA drives a spider node in the reflector support structure for

adjustment of the reflector shape. These are low power micro-adjustment
actuators using a stepper motor drive. The actuator can be operated open loop
where a given number of pulses is a specified incremental displacement. If
necessary, a LVDR position sensor could be added for a closed loop position
control: The FCA requirements have not been determined. Since it is a static
figure control device, bandwidth and dynamic force output are not critical.

Miscellaneous Components -
These include the CDA absolute and incremental position transducers,

the CDA travel limit switches, and GDA rotary position transducer, the GDA
travel limit switches.
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2.3 ANALYSIS PLAN

Verifyingreflector/beamtruss-stmcun'etechnologyrequiresanintegratedanalysis,ground-test,
flight-testeffort. Thissectionaddressestheanalysiscomponentof theeffort,anddescribesthe

primaryanalysesrequiredto supportgroundandflight testsalongthesedisciplinarylines:
structuraldynamics,controldynamics,thermal,andelectromagneticanalyses.

In additionto thedisciplinarydivisionof analyses,theycan also be divided by objective. For

example, one distinguishes among analyses for design development, design validation (or

verification), ground-test support, flight-test support, ground and flight operations, post-flight

evaluation, safety, and damage tolerance. Design development considers trade studies to f'malize

system and subsystem design requirements. Design validation considers performance of the

flight hardware during all phases of flight, including orbiter ascent, orbiter descent, beam

deployment, reflector deployment, reflector jettison, beam retraction, system emergency jettison,

vernier RCS maneuvers, and primary RCS maneuvers when partially and fully deployed.

Ground- and flight-test support considers simulating specific tests, correlating simulated and

measured ground-test data, and improving analytical models as required. Post-flight evaluation

considers reducing flight data, comparing simulated flight responses with actual flight data,

improving analytical models as required, and documenting all conclusions. Safety analyses

include the effects of premature extension, premature jettison, structural failure, orbiter digital

autopilot interactions, support structure safety, beam deployer/repacker function, hazards, and

control and power reliability. Damage tolerance analysis includes the effects of debris collision,

meteoroid collision, remote manipulator system collision, inadvertent vernier or primary RCS

operation during deployments, and EVA.

2.3.1 STRUCTURAL DYNAMICS ANALYSIS PLAN. There are two basic requirements of

structural dynamics analyses: the capability to analytically predict in- flight deployment

sequence and loads; and the capability to analytically predict the in-flight dynamic characteristics,

including natural frequencies, mode shapes, and damping. The accuracy and the number of

accurate modes required depends on the overall stiffness requirements and on mission and

control system requirements.

Refinement and validation of existing techniques to predict deployment sequences and loads is

needed to ensure accurate deployment modeling and accurate dynamic simulation.

Existing deployment dynamics methods, both procedures and computer codes (e.g., Figure 2-

39), are validated. The validation approach begins by modeling the deployment mechanisms of
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thereflectorandof the beam. Using the models, the ground deployment of the reflector and the

beam are simulated, both separately and as parts of the assembled flight article. The simulated

ground deployment sequences and loads are compared to ground-test results and model

improvements are made as required. Then, as part of the pre-flight analyses, on-orbit

deployment sequences and loads are simulated. Finally, as part of the post-flight evaluation,

actual flight data are correlated with the pre-flight analyses.
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Figure 2-39.

• SNAP computes both the kinematics of deployment, and the elastic

response of the structure.

• The deployment sequence is propagated through hinge lock-up and

continued until dynamic axial loads are d_ssipated.

• SNAP-computed deployment times and dynamic loads compare well to

measured data.

Structural Dynamics Analysis of Free Deployment Using SNAP

Technology issues associated with predicting structural dynamic characteristics are:

• Accurate structural dynamic modeling of complex mass structures with many joints.

• Structural dynamic model validation from individual substructure ground tests.

• Passive damping modeling and prediction.

• Model improvement based on substructure ground-test data to the accuracy required by control

dynamics.

The following analysis objectives address these issues:

• Validate dynamics analysis modeling methods (finite-element modeling) for complex many-

jointed truss structures with possibly discrete damping treatments
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• Validate methods for improving structural dynamic models from substructure full-scale

ground tests

• Validate the accuracy of analytical substructure synthesis methods (e.g., component modal

synthesis) when individual substructure models are verified by substructure ground tests.

• Provide analysis support for structural design and control system design, specifically

structural dynamic loads and characteristics.

The associated analysis approach (Figure 2-40) begins by modeling and computing the dynamic

characteristics of suspended major structural components (reflector and beam) as well as the

fully assembled structure. A full set of ground tests on the separate substructures provides test

data for improving the substructure models. The substructure models are then analytically

synthesized to form an assembled system model and correlate the dynamic characteristics of the

assembled model with ground test data for the assembled article. The on-orbit dynamic

characteristics of partially (after beam but before reflector deployment) and fully deployed

configurations are computed from the analytical models. The on-orbit response for each

structural dynamic flight-test case is simulated before flight and correlated with flight-test data

after the flight• Structural models are then adjusted as indicated by the flight test data•
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• Linear analysts of truss structure is standard.

• Must also do nonlinear static and dynam¢ analyses to rncJude effects of

joint free-play.

Figure 2-40. Structural Dynamics Analysis of Deployed Structure
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2.3.2 CONTROLS ANALYSIS PLAN. The requirements of control dynamics analyses are:

the capability to analytically predict closed-loop pointing performance (stability and accuracy) to

the level required for future NASA space-antenna missions; the capability to predict control-

structure interaction and its adverse effects, including vibration suppression techniques and

control system robustness; and the capability to analytically predict reflector surface errors and to

reduce the errors to the level required using an active adjustment system.

Technology issues associated with controls are:

• Verified accurate structural dynamic analytical models

• Control-structure interaction: the level depends on controller requirements

• Stability and performance robustness of controllers to modeling errors and uncertainties

• Figure measurement and actuation concepts and devices

• Ground testing methods for design verification, specifically the hybrid test approach

• Fault tolerance

The following analysis objectives address these technology issues:

• Validate controller design methodology, including system modeling and model order reduction

• Validate the hybrid test approach for on-ground design verification

• Validate figure adjustment methodology, including the ability to measure figure errors (figure

sensing) and actuation concepts (figure actuation) for reducing surface errors

• Provide analysis support for design and safety reviews

The associated analysis approach (Figure 2-41) begins by developing the following controls

models for simulations of the system on-orbit: deployed beam dynamic model, deployed

reflector/beam system dynamic model, and reflector and mesh actuator influence model. Forming

the models requires coupling with structural and thermal analyses and with ground tests, including

vibration suppression and figure adjustment ground tests. Then, ground-test analyses are

performed simulating the ground-test support conditions and configurations. A full set of tests and

analyses considers excitation and damping subsystem tests, reflector figure distortion tests, and

reflector figure adjustment tests.

Finally, flight-test analyses associated with on- orbit controls experiments are performed. This

includes analysis of the vibration suppression system and prediction of damping levels, analysis

and prediction of closed-loop stability robustness, and analysis and prediction of closed-loop

antenna performance under all orbital conditions.
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2.3.3 THERMAL ANALYSIS PLAN

2.3.3.1 Thermal Analyses Issues and Objective. On-orbit deployable truss reflector/beam

performance is sensitive to small thermal distortions. Accurate simulation of transient temperature

response to the changing thermal environment is therefore required. However, thermal modeling

and analysis of this complex truss structure is difficult. Use of ground and flight test data is

required to develop and validate analytical predictions.

The overall thermal analysis objective is to correlate analytical predictions with measured

temperatures and distortions, thereby validating analysis methods for operational thermal

conditions. The thermal analysis will also support thermal design of large deployable truss

structures to satisfy operational distortion requirements.

2.3.3.2 Overall Thermal Analysis Approach. The first step in the overall thermal analysis is to

develop a thermal model of the structure. To adequately simulate the thermal transients and

shadowing for these sparse structural systems, the models typically are very complex.

The second step is to perform a pre-ground test analysis simulating ground test environmental

conditions. Ground thermal tests are then conducted in a solar vacuum chamber. In these tests

temperatures at selected locations on the structure are measured, and photogrammetric

measurements establish the corresponding structural distortion. The thermal analysis is then rerun

with measured chamber boundary temperatures. Structural member temperatures and length

changes are predicted. At the temperature sensor locations, detailed member peripheral temperature

distributions are predicted. These predicted structure temperatures are correlated with measured

temperatures, the model is adjusted and the analysis is rerun. Resulting analytically predicted

member length changes are then used as input to a separate distortion analyses for eventual

correlation with measured distortion.

The third major step is to perform pre-flight test analysis simulating on-orbit flight test

environmental conditions. On-orbit testing is then performed.with Shuttle attitude, orbit and Earth

eclipse times selected to give desired space-environmental heating conditions. Temperatures at

selected locations on the structure are measured and corresponding distortions measured by

photogrammetry. A post-flight test thermal analysis is then performed using actual flight

experiment thermal/environmental conditions. Predicted structure temperatures are correlated with

measured temperatures and the thermal model is adjusted and rerun if required. Analytically
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predictedindividualmemberlengthchangesareinputtoadistortionanalysisfor eventual
correlationwithmeasureddistortiondata..

2.3.3.3 Individual Member Thermal Analysis Methodology. Folding and non-folding truss

members, and the mesh reflector surface elements for the deployable truss reflector/beam are

individually modeled. A folding member may require up to 13 thermal model sections of uniform

thermal characteristics, as shown in Figure 2-42. Temperatures are computed for each of the

sections including conductive coupling between sections. Member length change is determined by

computing the average temperature change from a reference temperature for each section and

employing the coefficient of thermal expansion (CTE) for that section. Total member length

change is then computed as the sum of the length changes for the individual sections.based on the

above modeling.

I STFlUCTURE MEMBER TEMP1EFlATURES FOR LENGTH CHANGE

• FOLDING MEMBEFIS, NON-FOLDING MEMBE FIS. MESH GRID LtNES (IN

PLAtIE OF MESIt)ANO MESII CON'fRO(. LINES (CONNECTING MESH TO
STFlUCTURE) N1E MOOa.E_

• MIIEMBEFI LENGTH CHANGE £)ET EflMINF.O BY CHANGE FnOM FlEFEFlE NCE
TEMPEFlATURE (70 OEO. F) OF EAClt SECTION I'IAVINO UNIFORM TtlEI1M, AL
CI_RACTERISTICS

1 r ..... IH r-....

• FOLO,NG STFlUT MAy REOUIRE UP TO 13 SECTIONS

• AVERAGE TEMPERATURE FOR EACH SECTION IS COMPUTED

• CONDUCTIVE COUPUNG BETWEEN SECTIONS IS SIMULAIEO

• SPECIAL PREX3RAM HAS SEEN DEVELOPED TO COMPUTE MEMBER TOTAL
LENGTH CIIANGE BASED ON ABOVE MODELING

Figure 2-42. Folding Member Thermal Modeling

2.3.3.40p_ _que Solar Shadowing on Modeled Members. An example of spacecraft solar

shadowing on modeled members is shown in Figure 2-43. Solar shadowers may include the

Shuttle or spacecraft, other truss members, or node fittings used to interconnect ends of the

members. Each truss and mesh reflector structural element is sub-divided into 1000 lengthwise

divisions for computation of full or no shadowing on each 1/1000 sub-element. Shadowed and

non-shadowed sub-elements within each thermally uniform section are counted and space heating

incident to that section is reduced by the ratio of shadowed to total sub-elements.
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II. OPAQUE SOLAR SHADOWING ON MODELED MEMBERS

7
EXAMPLE. SPACECRAFT SOLAR
SItADOWING ON MODELED
REFLECTORS

• SOLAR SHADOWERS MAY INCLUDE:

SHUI-rLE OR SPACEACRAFT
OTHER STRUCTURAL MEMBERS
STRUCTURE AT ENDS OF MEMBERS (SPIDERS)

• EACH MEMBER/MESH LINE SECTION IS SUB-DIVIDED INTO 1.000
LENGTHWISE DIVISIONS FOR COMPUTATION OF FULL OR NO
SHADOWING ON EACH 111,000 SUB-ELEMEN r

• SHADOWED AND NON-SHADOWED SUB-ELEMENTS WITHIN EACH
THERMALLY UNIFORM SECTION ARE COUNTED TO DETERMINE HEATING
REDUCTION FACTOR FOR THAT ELEMENT

Figure 2-43. Solar Shadowing on Reflector Members

2.3.3.5 Semi-Transparent Mesh Shadowing. The mesh acts as an angle-dependent shadower of

solar, albedo and Earth thermal heating. Typical transmittance (transparency) of the mesh as a

function of incidence angle is shown in Figure 2-44. The mesh becomes opaque at shallow

angles. Solar transmittance vs. incidence angle is measured using solar cell output voltage as an

indicator of percent of energy passing through the mesh. A transmittance equation (shown in

Figure 2-44) is developed from the measured data and is used in the thermal analysis. At certain

attitudes solar heating can pass through the mesh twice before reaching reflector/beam structure,

and this condition is simulated in the analysis as it occurs.
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Figure 2-44. Mesh Semi-Transparent Shadowing is Angle-Dependent

2.3.3.6 Detailed Modeling in the Area of Temperature Sensors. Thermal analysis methods

described above predict member cross-section average temperature but do not consider the

temperature spread around the cross-section periphery. Typical cross-section temperature

distributions are shown in Figure 2-45 for folding and non-folding (diagonal) members. Since

peripheral temperature variation can exceed 75C, it is clear that peripheral modeling is required for

local temperature prediction at sensor locations. Internal radiation is included because of the low

conductivity in the peripheral direction. Sun angle with respect to a cross-section fiat is seen in

Figure 2-45 to have the effect of skewing the temperature distribution, and is therefore included in

the analysis.
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Figure 2-45. Detailed Temperature Prediction at Sensor Locations

2.3.3.7 Thermal Analysis Capability. The thermal analysis tools/programs described above are all

developed and operational. A transient distortion analysis of complex orbiting structures,

including more than 300 structural truss members and 4100 reflector mesh elements, has been

conducted. Modeled structural member thermal characteristics include cross-section geometry,

material thermophysical properties, wall thickness and coefficient of thermal expansion. Any

number of discrete time intervals throughout the orbit may be selected for temperature distributions

predictions. With this approach, all significant changes in transient heating throughout the orbit

are simulated for each member. The key to operational use of these analysis tools is a

comprehensive validation and correlation with flight experiment test results.

2.3.4 ELECI_OMAGNETIC (RF) ANALYSIS. A communication or radar antenna is generally

required to provide a specified level of RF performance in the space environment throughout its

design life. The antenna is manufactured and adjusted to near ideal dimensions and tested under

controlled laboratory conditions to demonstrate performance compliance. On orbit, the antenna

reflector is subjected to continuous variations in temperature distribution due to diurnal change in
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sun angle. Parts of the reflector will also be shadowed by the spacecraft or the reflector itself. In

this varying orbital thermal environment the reflector surface will distort from the ideal shape• On-

orbit dynamic disturbances will also affect RF performance characteristics through surface

distortion and alignment errors. Due to these distortions, the antenna RF performance can vary

significantly from the ideal.

The purpose of the electromagnetic analysis is to predict the on-orbit RF performance of the

experiment reflector when subjected to the ground-test and flight-test environments. This includes

the calculation of performance degradation due to predicted thermal distortion and alignment errors

for correlation with measured test results. Figure 2-46 shows the process required to achieve an
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Figure 2-46. Electromagnetic Analysis Flow

accurate prediction of the reflector performance when subjected to a non-ideal test. The key to the

prediction process is the computation of thermal and dynamic distortions of the reflector surface.

A computer code called MESH has been developed to compute the shape of the distorted reflector

surface when subjected to thermal and loading disturbances• The distorted surface data from

MESH is input to a program called POSUBF, which is a physical optics electromagnetic analysis

program used to analyze the gain and pattern performance of the antenna. A hierarchy chart for

POSUBF, which uses FFT, aperture integration and GTD analyses, is shown in Figure 2-47.
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Features of the program include:

• Arbitrary rim shapes may be analyzed, including the GEOTRUSS hexagonal

configuration.

• Applied Kirchoff-Huygens-Silver integral using the induced-current method (positioned and

oriented).

• Accuracy is determined by the physical optics integration and number of analytic facets used to

approximate the reflector surface.

• The MESH program is used to provide node and connectivity data for the distorted reflector to

the POSUBF program.
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Figure 2-47. Hierarchy Chart for POSUBF

Other computer codes that may be used include an FFT program and an aperture

integration/geometric theory of diffraction (GTD) program, both of which may be used to provide

a quick, low-cost analysis of an ideal reflector using analytic or measured feed pattern data. A key

feature of the aperture integration/GTD program is the capability of calculating a complete 360

degree pattern for a general rim shape.

Output of the electromagnetic analysis include predicted pattern, gain, sidelobe level, null depth,

polarization and beam pointing performance of the reflector when subjected to the test environments.

These predictions are compared to measured test results for validation of the analysis methods.
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2.4 TESTPLAN

Theintegratedtestplanfor theDeployableTrussAdvancedTechnologyProgramdefinesall testing
to beperformedduringthedesign,development,fabrication,andflight testingof the5-meterand
15-meterreflectorbeamtestarticles.Testsincludedevelopment,qualification,acceptance,ground

experimentsandflight experimentsfor bothreflector/beamtestarticles.Thetestplanalsoprovides
for verificationof theinitial technicalriskassessmentof theabilityof eachhardwareelementand
systemto accomplishtherequiredperformancegoals.

Theoverallobjectiveof thetestprogramis to provideNASA with acomprehensiveseriesof

groundandflight testsdesignedto answerdevelopmentandoperationalissuesfor thedeployable
trussadvancedtechnologiesandtovalidateanalyticalmethodsandground-testapproaches

proposedfor futurelargedeployabletrussstructures.

Theprogramencompassesall levelsof testingto beperformedonthetestarticlesandusesMIL-
STD-1540B,TestRequirementsfor SpaceVehicles,asaguidetodefinethetestprogram.In that
context,mosttestingisconsideredto bedevelopmentalin nature.However,specifictest

requirementsrelatingto ShuttleintegrationandShuttleflight safetyissueswill beatthe
qualificationtestinglevel. Thetestplanis dividedintoGroundTesting,discussedin Section
2.4.1,andFlight Testing,discussedin Section2.4.2.

2.4.1 GROUND TESTING. The ground-test program is divided into four elements: development

tests, acceptance tests, qualification tests, and ground experiments. The test program flow is

shown in Figure 2-48.

2.4.1.1. Development Tests. Development testing is intended to answer specific design concerns

during the initial design and early hardware development stages. As such, they are typically

performed at the component and subsystem level. A summary of the development test matrix is

shown in Figure 2-49.
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Figure 2-48. Ground Test Program Flow

2.4.1.2. Qualification Tests. The qualification test program is intended to qualify components and

subsystems for flight in the STS orbiter cargo bay. These tests require quality assurance and

DCAS suveillance along with documentation of compliance with the system requirements. The

qualification test matrix is shown in Figure 2-50.
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2.4.1.3 Acceptance Tests. This category covers those tests performed on production hardware to

prove compliance with the manufacturing specifications. They include both functional and

environmental tests and require quality assurance and DCAS surveillance. The acceptance test

matrix is shown in Figure 2-51.
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2.4.1.4. Ground Experiments. Ground experiments are performed at the system level and are

redesigned to validate analysis methods and demonstrate key flight experiment parameters. The

ground experiment test program includes deployment testing,thermal testing, dynamic/control

testing and near-field RF testing. The ground experiments are defined in Figure 2-52. The matrix

of hardware and system elements involved in the ground experiment test program is shown in

Figure 2-53.
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Figure 2-52. Ground Experiment Definition
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2.4.2. FLIGHT TEST. The objective of the flight test program is to provide a comprehensive series

of on-orbit tests designed to demonstrate advanced truss structure technologies and validate analysis

and ground test methods and performance prediction capabilities. Specifically, the program

addresses deployment, structural dynamics, control and thermal distortion issues. To achieve the

flight test objectives, extensive coordination of many flight and flight support elements is required.

This coordination effort, which is discussed in detail in Section 2.5, includes: Shuttle orbiter and

crew, SPARTAN payload for RF experiments, MCC-Houston, TDRSS and Nascom networks and

the experiment POCC.

2.4.2.1 Approach. The flight crew is responsible for execution of experiment and orbiter support

during the mission. The majority of experiment activity to be performed by the flight crew can be

categorized as:

• Orbiter configuration and support operations

• SPARTAN operations

• Experiment operations

The orbiter will provide various modes of support to the Reflector/Beam experiment. Mission

specialists using the RMS will deploy and retrieve the SPARTAN payload for the RF experiments.

Once the SPARTAN is deployed, the orbiter will be required to fly in station-keeping modes to

establish and maintain a suitable RF test range, and will also provide the pointing and attitude

platform for reflector experiments. The pilot and commander will be responsible for orbiter control

including SPARTAN proximity maneuvers for range orientation, attitude maneuvers, and pointing

control for reflector RF and thermal tests, The orbiter RCS may also be used as a low-frequency

excitation source for dynamics experiments.

The SPARTAN free-flyer payload will carry the signal source for the RF experiments. While the

SPARTAN can provide a space-based RF test range, operational limitations will require extensive

analysis and pre-flight planning. The current SPARTAN configuration does not include a

transponder or other means of remote, real-time command capability. Once deployed, all

operations and functions (power switching, attitude maneuvers, etc.) are controlled by pre-

programmed memory. Events and operations sequences are initiated by timers or onboard sensors

(star scanners, sun sensors, etc.).

Because of this, an elaborate program scheme could be required to accomplish the experiment

objectives of the flight test program. This dependence on a fixed, inflexible program also

increases the flight-test sensitivity to unforseen problems and schedule deviations. If an in-flight
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anomalyshouldoccurthatrequiredreal-timeanalysisorreplanning,ablockof experimentswould

probablybeeliminatedin orderto "catchup"with theSPARTANoperatingsequencethatcould
notbedelayedandthatcontinuedto functionduringtheunscheduleddelay. To avoidthis

scenario,theSPARTANprogramshouldbekeptassimpleaspossible,suchasoperatingin an
attitudeholdmoderequiringorbitermaneuversforpointingorrangerequirements.Additionally,
timelinesfor experimentsshouldbeliberallyestimatedto avoidtestsequencetimesensitivity.

An additional concern for SPARTAN capability is battery life. Depending on power

requirements, battery life with the standard configuration could be low. Add-on battery kits are

available and should be included because of the SPARTAN power operation mode. If the

onboard computer senses low battery power output, the SPARTAN "auto-modes" to a low-power

configuration where all systems are powered down in an orderly fashion, except for the attitude

control package. To avoid "early" termination of SPARTAN support operations, battery loads

should be sized with considerable margins.

Real-time operations decisions affecting the STS and flight crew will be controlled by the Houston

Mission Control Center (MCC-H). The MCC-H flight control team is responsible for flight crew

and SSV safety, and for the execution of the flight to accomplish mission objectives. All mission

support operations are coordinated with and controlled by this team. The Houston Payload

Officer is the primary interface between the MCC-H and the experiment POCC, and is

responsible for ensuring that proper STS support and facilities are provided.

The Reflector/Beam POCC will provide technical support and recommendations to the STS on

decisions affecting experiment operations. POCC activities will be accomplished by a team of

NASA and contractor scientists, engineers, and management personnel. Specific tasks and

responsibilities of the POCC team include:

• Provide the MCC-H Payload Officer with recommendations concerning normal and contingency

operations involving the experiment and STEP Pallet.

• Monitor the experiment and STEP operational status and safety-related data during experiment

operations.

• Record real-time data and recorder dumps for in-process and post-mission

analysis.

• Monitor and verify all crew-initiated experiment operations.

• Authorize continuation and/or provide revisions to experiment sequence execution, or direct

termination of the experiment at specified points in the experiment plan.
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2.4.2.2Flight -Test Definition. To ensure completion of essential flight-test objectives, the

flight-test plan is designed for flexibility to compensate for unanticipated time deviations from

nominal plans, and to allow for the resolution of possible anomalies in experiment operations. A

preliminary set of the experiment events and major test block sequences needed to meet the flight

test objectives were identified. Preliminary time estimates indicate that four crew work periods of

eight hours each will be adequate for experiment flight objectives, as shown in Figures 2-53 and 2-

54. Time scales for these figures show hours (even hours numbered), and orbital period. One

orbit period represents 90 minutes total with 50 minutes of sunlight and 40 minutes in darkness.

Note that the start of each flight day is timed to provide sunlight during critical or "light-required"

operations such as deployment operations or thermal effect tests.

Flight test day 1 consists of beam deployment and beam dynamics investigation with the reflector

in the stowed configuration. Test objectives for deployment include the evaluation of deployment

mechanisms performance, and the structural dynamics of the beam during this process. Once

deployed, a series of low- and high-frequency surveys wiU be performed to provide data for

dynamic characterization of the beam.

R/B flight day 2 involves the deployment of the reflector, and the investigation of combined

Reflector/Beam dynamic behavior. Deployment objectives include measurement of deployment

performance, reflector dynamics, beam behavior, and the resulting surface quality of the deployed

reflector. After the reflector has been successfully deployed, dynamic surveys on the combined

structure will be performed.

Flight day 3 addresses the RF performance of the reflector. To accomplish this, SPARTAN

operations for checkout, deployment, and RF range setup are scheduled before any R/B activity.

Once SPARTAN support has been established, a series of experiments on environmental

influences on reflector shape and resultant RF performance will be conducted. Various attitude

maneuvers will be performed by the orbiter to produce suitable conditions of shade and sun

exposure on the reflector surface. Effects of solar exposure on reflector shape and the resulting

changes in RF performance will be measured.

Hight day 4 involves the active manipulation of the reflector surface. Both surface contour control

and reflector pointing capabilities will be investigated for effects on RF performance and dynamic

behavior. Because the reflector is not designed for re-stow, it will be jettisoned at the completion

of reflector testing. Following reflector jettison, the beam will then be re-stowed in the orbiter

cargo bay at the end of R/B flight day 4.
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Sincerecoveryof the SPARTAN will require several orbital maneuvers for rendezvous and RMS

grappling, those operations are intended to be performed on subsequent flight days (not shown),

after the experiment tests are completed and the beam hardware has been secured in the cargo bay

for retuI'n.
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Figure 2-53. Timelines for Flight Days 1 and 2
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Figure 2-.54. Timelincs for Flight Days 3 and 4

2.4.2.3 Risk Assessment. Figure 2-55 is a functional flow diagram for the reflector/beam flight

experiment. This flow was used to develop the risk assessments summarized in Table 2-26.

These risk assessments were developed to drive out the verification requirements that could bc

reasonably satisfied by test. Other requirements arc verified by analysis. These initial risk

assessments arc based on prior experience with similar hardware and projections of the capabilities

of existing hardware. Ultimate traceability of the reflector/beam test program to the system

requirements, including performance verification, is shown in Figure 2-56.
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Table 2-26. Preliminary Risk Assessment

CRITICAL SUBSYSTEM/ REQUIREMENTS RISK VALIDATION

FUNCTION COMPON EN T M ETHOD

EXPERIMENT

PACKAGE

PREFLIGHT

CHECKOUT

LAUNCH

ON-ORBIT

CHECKOUT
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BEAM

DYnaMIC
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OF BEAM

THERMAL

EXPOSURE OF

BEAM

DEPLOY

ANTENNA.

DYNAMIC EXCIT.

OFAN|ENNA

THERMAL EXPOS

OF ANTENNA

ANTENNA R.F.

PERFORMANCE

RETRACT
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BEAM, OR

JETTISON

EXPERIMENT

PACKAGE
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DEPLOY. MECH.

& BEAM
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MECH. AND
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METRIC & THERMAL DATA

VERIFY ANTENNA R.F.

PERFORMANCE

PERMIT ORBITER TO DE-

ORBIT SAFELY (FLIGHT

SAFETY ITEM)

LOW

MEDIUM

LOW

LOW

LOW

HIGH {')

MEDIUM

LOW

HIGH (')

MEDIUM

MEDIUM

i

,DEVELOP., DUAL.

TESTS

DEVELOP., QUAL.

TESTS; ANALYSIS

:JSCPRECURSON

THERMAL-VACUUM TST

GROUND TESTS,

ANALYSIS

GROUND ZERO-G

TESTS, ANALYSIS

PHOTOGRAM. SYS.

DEVELOP, GROUND

TESTS, ANALYSIS

GROUND ZERO-G TESTS
ANALYSIS

GROUND ZER(_G TESTS

ANALYSIS

ANALYSIS, GROUND
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GROUNOTESTS,

ANALYSIS

GROUND TESTS,

MANNED INTERVENTION

BACKUP

('} HIGH UNCERTAINITY IN ANALYTICALLY PREDICTING THERMAL DISTORTIONS.

2.4.3 POST-FLIGHT EVALUATION. Post-flight evaluation includes correlation of analysis

and ground testing with the reduced flight test data, post-flight testing of the returned hardware,

and modifying and updating the flight experiments.

2.4.3.1 Analysis and Ground-Test Correlation. The primary post-flight evaluation task is to

reduce the extensive deployment dynamics, thermal surface accuracy, shape control and RF flight

test data and to correlate it with preflight analysis and ground-test experiment performance

predictions. This evaluation is designed to verify the analytical and ground-test techniques used to

predict flight behavior and to identify areas where analysis and ground-test methods improvement

are needed. The primary test correlation activity is shown in Table 2-27.
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2.4.3.2 Post-Flight Testing. Since the reflector is jettisoned at the end of each flight, post-flight

testing is directed primarily at the deployable truss beam which is retracted, restowed, and

returned after each flight. The truss structure will be inspected for damage, repaired and

refurbished as required, and then tested to verify performance. These tests will include functional

deployment tests, a dynamic modal survey, and static tests to verify structural integrity. Results

will be correlated with similar tests performed prior to each flight to identify any changes in the

system.

2.4.3.3 Experiment Update. A major advantage of having two flights is the ability to modify the

second flight experiment based on an evaluation of the f'u'st flight data. Of particular interest are

instrumentation and data acquisition and updated and hard/software changes due to experiment

difficulties. To remit these changes within the limited time between flights (19 months), a highly

automated data-reduction system is required.

2.5 PAYLOAD INTEGRATION

The payload STS integration and operations support activities occur over many months. Figure 2-

57 shows the progression of these activities by major functions. The integration process includes:

1) integration of the experiment; 2) integration of the various payloads into a cargo; 3) integration

of the cargo with the STS; and 4) identification and development of ground and flight capabilities

required to support the mission. These activities provide an assessment of payload design,

assurance of cargo physical and functional compatibility with the space shuttle vehicle (SSV), a

def'mition of requirements for flight design, assurance of feasibility for ground and flight

operations support, and preparation for flight.
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Figure 2-57. STS Cargo Integration Process

2.5.1 MISSION MANAGEMENT. The integration process for the Reflector/Beam flight

experiment is directed by the Payload Mission Manager (PMM) assigned to the project by NASA

Headquarters. The PMM is ultimately responsible for integrated payload definition and design,

verification of STS compatibility and safety compliance, and for coordinating requirements with

supporting organizations. The PMM interfaces are shown in Figure 2-58.
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Figure 2-58. STS Mission Management Structure

The PMM will be assigned from either JSC or MSFC and the selection could have a significant

impact on the overall integration process. The MSFC integration process is designed primarily for

Spacelab-hosted experiments and hardware. Under this arrangement, the integration functions are

performed at MSFC and all documentation is then submitted to JSC for review, approval, and

integration into the STS operations plans. This would require the Refiector/Beam organization to

support the total process through two NASA levels: first through the MSFC organizations, and

then through the JSC organizations, essentially doubling the number of technical and managerial

interfaces that the Reflector/Beam program must deal with.

The JSC integration process addresses the experiment as an attached STS payload, thus eliminating

a significant amount of the intermediate "Spacelab-to-STS" integration activities. Another

consideration is the fact that JSC Mission Management is colocated with the STS Operations

elements, allowing simpler and more cost-efficient representation to those elements ultimately

responsible for the integration, planning, and execution of the experiment mission.

Since the Reflector/Beam wiU require integration with a Spacelab-derived hardware element, (i.e.,

the Step Pallet), it is not clear which center will be assigned the PMM responsibility. Precedents

have been set for both cases by previous experiments.
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2.5.2 INTEGRATION MANAGEMENT. This section addresses the approach to planning and

supporting the Reflector/Beam experiment development, integration, and operations activities.

Primary focus is on manned interfaces and interactions between the STS and the cargo element,

and developmental application of full capabilities to support a payload system. The integration

management discipline comprises six major elements:

• Program Conceptual and Integration PlanningmDefines program tools, personnel, and

other resources required to support the integration and operations process.

• Integration and Operations Management SystemmDefines management involvement,

roles, and responsiblities.

• Milestone Program Reviews_Describes how to prepare and conduct major incremental

program reviews.

• Interface Requirements and Verification Management_Defines how interface

requirements are collected, documented, controlled, and verified.

• Mission Readiness Certification_Describes how to prepare mission interface certification

packages to support NASA readiness reviews.

• Mission Support_Provides guidelines for making real-time decisions and postflight reports.

2.5.2.1 Conceptual Integration and Management. Conceptual planning should begin before

formally initiating the STS integration process, with the Space Flight Operations group

participating in payload system definition, development, and definition of essential ground and

crew interfaces required for experiment command and control. STS related experience has

demonstrated that the early introduction of operations philosophy provides assurance of

STS/payload compatibility and reduces the possibility of adverse program redirection and costly

hardware redesign.

The Space Flight Operations group provides shuttle data and integration experience to new payload

program offices, along with trade study and analysis support, to help define shuttle compatible

payload configurations, mission planning, and operations concepts. This process is detailed in

Figure 2-59.
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2.5.2.2 Integration Operations Management. Organizational participation in the integration effort

for an experiment program is normally controlled by two integration management groups. The

plan includes an Experiment Integration Management Group (EIMG) co-chaired by NASA LeRC

and the experiment contractor, and a joint Cargo Integration Management Group (CIMG) co-

chaired by the participating NASA field centers. The relationship between the management groups,

working groups, and supporting discliplines is shown in Figure 2-60.

The Integration Management Group plans and schedules working group activiiSes, monitors

progress and action item status, resolves problems, and ensures that interface documentation is

completed in accordance with master schedules. The EIMG has five primary functions:

• Ensures the adequacy and accuracy of all requirements and verification documentation

• Resolves technical and management interface issues

• Prepares the integration flight certification data packages

• Facilitates spacecraft design and design trades

• Prepares for joint CIMG activities

The CIMG convenes when joint NASA integration activities begin, and functional participation is

essentially the same as for the EIMG. The NASA integration team is led by a Space Shuttle

Program Office (SSPO) project engineer who serves as JSC's representative for the experiment

program.

MANAGEMENT
...................... ° ..........

I Experiment or Cargo Integration JManagement Group

WORKING GROUPS
................................

i ,.,.ol.o, I I
ION OPERATIONS I I OPERATIONS II OPERATIONS I

WORKING GROUP DISCIPLINES
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Figure 2-60. Integration Working Group Structure
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2.5.2.3 Interface Requirements and Verification Management. The interfaces that may exist

between a cargo element and the STS are: 1) physical (including structural elements, mating

connectors, and mechanical envelopes); 2) functional (including electrical power and signal data,

software, RF communications, and fluid); 3) environmental (including dynamic and static loads,

thermal, electromagnetic, and vibroacoustic); and 4) operational (including flight crew, ground

crew, and control center interactions).

Verification requirements for the Reflector/Beam will be drawn from those defined for STEP

hosted payloads. Each requirement will be defined by identification number,

description,verification method, and source of design requirement. A formal verification plan

complete with schedules will be developed.

2.5.2.4 Mission Readiness Certification. A certificate of safety compliance is prepared to support

program readiness reviews. This certificate states that all interfaces and elements are compatible,

have been verified, and are ready for flight. NASA elements are similarly certified. A certificate of

flight readiness (COFR) is signed by NASA at the FRR to certify compliance.

2.5.2.5 Mission Suot_ort. The objectives of this area are to monitor prelaunch, mission, and post-

landing operations and to make decisions regarding aborts, contingency operations, and early

termination of mission. General Dynamics has maintained an active role in mission support for

Atlas and Atlas/Centaur launch vehicles at the Eastern Test Range and Vandenberg Air Force Base,

and was extensively trained in space shuttle operations and mission support in the Centaur Payload

Operations Control Center (CPOCC) at Cape Canaveral Air Force Station.

2.5.3 INTEGRATION REVIEWS. Significant activities in the Reflector/Beam experiment

integration process are the periodic reviews conducted to allow Program and STS management to

properly assess that the planning efforts have adequately scoped and directed implementation

activities. These milestone reviews are conducted anywhere from L-48 to L-1 months depending

on the integration complexity and schedule adherence.

2.5.3.1 Program-Level Reviews.

Systems ReQuirements Review. The SRR is normally conducted within the first few months after

contractor award(s). The review verifies management's understanding and completeness of the

operational requirements to be satisfied by the experiment system. It also assesses the effects of
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thoserequirementson theproposedsystem design and STS integration effort. The Reflector/Beam

organization is responsible for and chairs this review.

Systems Design Review. The SDR is the final formal review of all system requirements,

production planning, system characteristics, and systems engineering progress before developing

preliminary configuration items. The Reflector/Beam Program and General Dynamics will cochair

the review, but GD is responsible for establishing the time, location, agenda, and conducting the

review. Working group inputs will be incorporated into the SDR data package distributed prior to

the review.

Preliminary Desima Review. The PDR evaluates the progress, technical adequacy, and risk

resolution of the configuration item design approach prior to initiating the detailed design. The

main differences between the SDR and the PDR are: 1) the SDR addresses the total system while

the PDR reviews each system component; and 2) the SDR evaluates the total system development

methodology and the PDR examines the design approach for each configuration item in more

detail.

Critical Design Review. The CDR determines: 1) design adequacy in meeting the performance and

engineering requirements; 2) design compatibility between configuration items and other interfaces;

3) areas and degree of risks; and 4) completeness of preliminary product specifications for each

configuration item under review.

2.5.3.2 NASA Reviews.

Safety Reviews. The STS payload safety review process is established to assist the JSC Shuttle

Payload Integration Development Program Office (SPIDPO) and the KSC Director of Safety in their

responsibility for safety assurance. The safety panels, chaired by JSC and KSC, are responsible for

conducting the phased reviews during which all safety aspects of payload design, flight operations,

GSE design, and ground operations are reviewed.

Phased safety reviews will be conducted at four levels of Refiector/Beam development-phase 0

through III. The phase 0 review will be an informal review. Phase I through III reviews will be

conducted by review panels according to specific agendas and topics as outlined in Table 2-28.

All appropriate data to be presented at each safety review will be submitted 30 days in advance by the

Reflector/Beam organization to the JSC SPIDPO and the KSC Director of Safety.
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Flight Readiness Review. The STS FRR is conducted to verify completion of all STS/cargo

integration activities, and certify the readiness of all flight elements to support the mission. Prior to the

FRR, the Reflector/Beam experiment, other cargo elements, and the STS will be internally statused to

verify readiness to support the flight. The FRR is conducted by NASA Headquarters and is supported

by the following elements:

• Space Shuttle Vehicle

• Cargo Integration

• Payloads

• Carriers (STEP Pallet, etc.)

• Mission Control Center

• POCCs

• Communication Network and Range Safety

• Launch and Landing Site

As a result of the FRR, all flight and flight support elements are committed to launch on a specific date

and time of day.

2.5.4 DOCUMENTATION. The process of documenting requirements begins by defining the

initial mission/experiment objectives, design constraints, and STS constraints. These initial

requirements are continually assessed in the flight planning activity. They evolve into deiailed

support documents developed by various STS agencies. The matrix in Figure 2-61 cross-

references the products and functions of the integration process with the applicable facilities and

organizations involved.
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Figure 2-61. Integration Document Matrix

2.5.4.1 Experiment Requirements Document. The ERD is one of the f'n'st and most significant

integration documents to be developed by the Reflector/Beam organization. Submitted to the

Payload Mission Manager (PMM), the ERD addresses the experiment-to-carrier interface

requirements for:

• Experiment Operations and Configuration

• Flight Operations and Environments

• Electrical Requirements

• Thermal Control Requirements OR_,?_:_:L ,.,,_.,.z-.. _3

• Command and Data Management OF. POOR QUALITY

• Software

• Physical Integration Requirements

• POCC Requirements

• Post-flight Data Requirements
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The ERD will become the baseline for engineering and mission analyses to be performed by the

PMM organization. Development of subsequent integration and operations documents will also

depend on the data contained in the ERD. Because of this, it is extremely important that all

Reflector/Beam requirements be documented here. The ERD is phased by level of detail to

accommodate the concurrent development of the experiment hardware and the definition, design,

and evaluation of the payload. Updates are submitted at key points during the integration process

to provide additional detail on the experiment design as they develop.

2.5.4.2 Instrument Interface A_eement. The IIA is the document used jointly by the PMM and

the experiment developer to define in detail the physical aspects of electrical, mechanical, and

thermal interfaces between the Reflector/Beam and the Step Pallet. Environmental,

electromagnetic, mass property, and schedule requirements are included. An envelope drawing

indicating maximum size, limits of motion, connector locations, and mounting arrangement is also

part of the document. The lZAs are prepared by payload mission management and reviewed in

detail with the Reflector/Beam developers. Once agreed to by the R/B organization, the IIA

becomes the controlling interface document.

2.5.4.3 Operations and Intem'ation Agreement.(O&lA). The O&IA formalizes the operational

and software interfaces between the experiment and the carrier. All flight requirements, including

operation sequence, command loading, telemetry formats, timelines, data to be recorded and

transferred to the Reflector/Beam investigators, contingency plans, and on-orbit constraints are

contained in the flight operations section. The ground operations section contains all requirements

pertaining to integration operations at PMM facilities, the launch site, transportation data, and the

launch pad.

A formalized configuration management procedure is in effect at the time the interface agreements

are baselined and any changes are processed and incorporated according to these procedures. The

relationship between the ERD, and the interface agreements is shown in Figure 2-62.
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Figure 2-62. Experiment Requirements and Interface Agreement Interaction

2.5.4.4 Payload Integration Plan. The Payload Integration Plan (PIP) is the agreement between

the Reflector/Beam Program and NASA that defines agency responsibilities, program

requirements, and tasks required to integrate the payload into the STS. The signed PIP constitutes

technical agreement on the tasks to be performed, and includes identification of tasks that NASA

considers as standard or optional services. The PIP is a dynamic document that must be updated or

revised as mission requirements are modified. All aspects of the mission must be documented in

the PIP. If a summary of a requirement is not in the PIP, NASA does not consider the requirement

as valid. Requirements are detailed in the various PIP annexes.

Development of the PIP is shown in Figure 2-63. The process begins with the preparation of a

draft document that scopes the payload/STS requirements. It will provide the format and general

level of detail required for the Reflector/Beam integration effort. The draft PIP is distributed to the

STS and Reflector/Beam organizations prior to the initial integration meeting.

The purpose of the initial integration meeting is to mutually review the draft PIP and to familiarize

the Reflector/Beam personnel with the payload integration requirements flow and review process.
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The STS and Reflector/Beam organizations ensure, as a result of this meeting, that the resultant

PIP has properly identified the payload's orbital requirements and constraints, required STS

interfaces, ground flow at the launch and landing sites, and the engineering and operational

analyses required to further define the STS/payload interfaces and services. Additionally, the

development of integration activity schedules should be initiated at this meeting.

As a result of this initial meeting, the preliminary PIP will be prepared by JSC and distributed to

the Reflector/Beam organization for review, and to the STS organizations for information. Review

comments are distributed to the applicable organizations and a meeting is scheduled to resolve any

issues. The basic PIP is then approved and signed by the NSTSPO manager and the appropriate

Reflector/Beam program manager. The basic PIP is then distributed to STS organizations, NASA

Headquarters, and to the Reflector Beam organization for information and implementation.

Annexes to the basic PIP are then established for the Reflector/Beam organization to provide

detailed data necessary for STS elements to implement the integration functions provided for in the

PIP. Some of the data directly supports crew and ground activities and will become part of the

flight data file (FDF).
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Figure 2-63. PIP Development Process

Annex 1: Payload Data Package. This annex describes the physical and mechanical properties of the

Reflector/Beam, airborne support equipment, and ancillary equipment (including that located in the
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crewcompartmenO. This description includes payload weight, mass, and RF radiation data, and

provides configuration drawings and functional data. Information on elevation and separation

mechanisms, special payload deployment and retrieval system requirements, payload attitude and

attitude reference data, and thrust characteristics. Annex 1 is not a contractual document, but does

provide JSC with payload information needed to satisfy requirements and perform the mission.

Annex 2: Flight Planning. This annex documents the requirements for flight design and crew activity

planning. The three major annex sections are: 1) detailed trajectory and launch Window requirements;

2) required payload/crew functions; and 3) power, thermal, and attitude requirements. Two formats

exist for preparing PIP Annex 2. The applicable format for Reflector/Beam is JSC No.14099 Annex 2

for Attached Payloads. The requirements levied on the STS by PIP Annex 2 drive the post-CIR

development of the crew FDF and crew activity plan (CAP).

Annex 3: Flight Operations Support. The flight operations support annex (FOSA) defines how flight

control personnel will work and interface during the flight. Included are the operations decisions,

alternate plans, or courses of action that need pre-flight consideration.

Nominal, malfunction, and emergency payload procedures that require action by crewmen or flight

control personnel are also addressed.

Annex 4: Command and Data. This annex defines the specific requirements for payload command and

instrumentation data to be processed by the NASA STS data systems. Included are:

• Data telemetered to the ground

• Data processed by JSC

• Data displayed onboard the orbiter

• Uplinked commands

• Onboard command and control

• Fault detection and annunciation

• Data channelization

The data in this annex is used by JSC to design the orbiter avionics software for the mission.

Annex 5: Payload Operations Control Center Interface Requirements. The payload operations control

center (POCC) annex contains Reflector/Beam information required to support command and data

monitoring from the POCC. Part 1 is applicable to POCCs resident within the Mission Control Center

at/SC (MCC-H), and part 2 defines the requirements necessary for shipment of data to remote

locations. The functional interface requirements in this annex include:

• Telemetry support/processing services
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• STS communication and command support

• Trajectory related services

• Voice communication services

• Video services

• Text and graphics uplink requirements

• Taped data transfer services

• Testing

Annex 5 constitutes a formal interface agreement between MCC-H and the remote POCC. Because of

the importance of this agreement, and the amount of detail required, the preliminary POCC

requirements must be developed early in the integration process.

Annex 6: Orbiter Crew Compartment. The orbiter crew compartment stowage annex provides

detailed descriptions of the Reflector/Beam items to be stowed in the crew compartment.

Descriptions will include size, weight, and use requirements that affect location, access, and

handling of the equipment. This annex also defines the nomenclature of payload-assigned controls

and displays in the aft flight deck (AFD) stations. Functional interfaces for equipment located in the

AFD are documented in the STS/Reflector/Beam ICD.

Annex 7: Training. This annex is a description and schedule of Reflector/Beam-unique training

activities required to support the mission. The information required to schedule training includes

facilities to be used, and amount and location of training to be accomplished. The following items

wiU be covered:

• Personnel to be trained

• Nominal mission events to be simulated

• Contingency events to be simulated

• Types of simulations to be eonducted (joint, integrated, etc.)

• Facilities and locations

• Hours of training required

• Schedule of training activities

These activities ensure familiarization of the Reflector/Beam by flight crew and mission support

personnel, and are integrated with STS training activities for scheduling when STS crewmen are

available.

Annex 8: Launch Site Support Plan. The launch site support plan (LSSP) annex provides

information for planning launch site processing that occurs in parallel with the planning for payload
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andcargo integration activities conducted by JSC. KSC assigns a Launch Site Support Manager

(LSSM) at approximately the same time that the SPIDPO Engineer is assigned by JSC. The LSSM

serves as the key point of contact between the Reflector/Beam Program and the STS organization for

launch site processing. The LSSP is prepared as a joint STS/Reflector/Beam agreement like the

other annexes. The plan constitutes a commitment of launch site facilities, support equipment, and

services to the Reflector/Beam Program for a specified period of time.

Annex 9: Payload Verifcation Requirements. This annex defines the requirements for

Reflector/Beam verification and submission of certificates of compliance at key points in the

verification program. This annex consists of four parts: 1) verification requirements; 2) launch site

service requirements; 3) end-to-end testing requirements; and 4) avionics services for special

payload requirements. Part 1 is not required for document submittal purposes while Part 2 is

mandatory for all payloads. Requirements for Parts 3 and 4 shall be established in the PIP.

Annex 11: Extra-Vehicular Activity Requirements. Annex 11 defines the specific design

configuration for each hardware interface associated with EVA activities required to support the

Reflector/Beam experiment. Even if no planned EVA is identified, contingency EVA requirements

must be documented. Crew training, flight planning, and flight operations support related to the

EVA wiI1 be included in their respective annexes. Items covered in Annex I 1 include:

• Description of the EVA scenario(s)

• Specific tasks to be undertaken

• Definition of physical worksite characteristics

• Orbiter orientation constraints

• EVA task time estimates

• STS-supplied support equipment

• Stowage location for EVA equipment stowed in the payload bay

2.5.4.5 Safety Report Documentation. The NASA Headquarters document, "Safety Policy and

Requirements for Payloads Using the Space Transportation System," NHB 1700.7B, establishes

both technical and system safety requirements applicable to all STS payloads. The launch and

landing site safety requirements are specified in the Space Transportation System Payload Ground

Safety Handbook, KI-IB 1700.7. These documents are applicable to all payload hardware,

including new design, existing design (reflown hardware), and GSE. The implementation

procedure for STS payload system safety is documented in JSC 13830A.
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Thedevelopmentof safetycompliancedatais asignificantelementin thedocumentationeffort.
Thesedataprovidethebasisfor certifyingthattheexperimentequipmentcomplieswith NHB

1700.7arequirements.In general,safetydatapackagesmustincorporatesufficientinformationto
enableassessmentof operations,hazards,causes,controls,andverificationof theadequacyof

hazardcontrols.Specificdatarequirementsaredetailedin theimplementationguidelineSTS
PayloadSafetyGuidelinesHandbook,JSC11123,andtheSpacelabPayloadProjectOffice

PayloadSafetyImplementationPlanJA-012.

2.5.4.6 Interface Control Documentation. The Reflector/Beam hardware interface design must be

verified to determine if all the requirements have been met. Most detailed interface requirements

for the Reflector/Beam will be detailed in a dedicated STEP ICD. The Reflector/Beam

organization will receive some guidance in defining these interfaces; physically in the IIA, and

functionally in the O&IA.

STEP interfaces to the orbiter will be defined in a separate ICD, as will any ancillary hardware

unique to the Reflector/Beam experiment that is carried in the crew compartment of the orbiter.

The ICD hierarchy and relationship to other integration documents is shown in Figure 2-64.
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Figure 2-64. PIP/Annex/ICD Structure
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2.5.4.7 Flight Data File. The Flight Data File (FDF) is the total onboard complement of

documentation and related items available to the crew for flight execution. The FDF includes
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proceduralchecklists, integrated tirnelines, malfunction procedures, reference data books, crew

activity plans, decals, cue cards, and miscellaneous hardware such as book tethers and clips.

Data for the development of the preliminary FDF is drawn from the PIP and PIP annexes, and

should be published for review in the L-13 to L-11 month range. At approximately L-5 months, the

preliminary FDF will be released as the basic issue containing the preliminary version plus any

additions or changes that occur after the preliminary release. The FDF basic version will be placed

under change control following the Flight Operations Review (FOR), meaning that all changes must

be reviewed and approved in writing by the Crew Procedures Change Board (CPCB)

representative, Flight Director's Office, and the FDF book manager.

It is the basic version of the FDF that is given extensive use by flight crew and flight operations

support personnel (FOSP) during various reviews and training activities. As a result, the basic FDF

is subject to many change requests. These requests can originate with anyone involved in the flight,

including NASA or contractor FOSP, flight crew, simulator personnel, etc. The critical task is to

follow change requests (submitted on NASA form 482), independently evaluate the request, and

respond through the appropriate FDF book manager or CPCB representative.

The FDF final version should be released at the L-3 month range, and will incorporate revisions and

changes approved since the release of the basic issue. Change requests can still be submitted via the

482 process, and the request review/evaluate/respond process must continue until the FDF is

"frozen" at approximately L-3 days.

While JSC is responsible for developing the overall STS FDF, GD Space Systems Division will be

working closely with NASA JSC counterparts who publish the FDF, and LaRC Reflector/Beam

opeations staff during the FDF development process. This interface ensures that the integration of

payload FDF data with SSV data does not adversely affect Reflector/Beam operations and

completion of mission objectives. Table 2-29 lists the FDF articles by title, organizational control,

and content.
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Table 2-29 Flight Data File Articles

DOCUMENTTITLE ORGA_ZA_ON CONTENTS

Ascent Checklist JSC-DH3 • NOMINAL PROCEDURES FOR
PRELAUNCH, POST OMS 1
BURN, DELAYED OMS 1
BURN, POST DELAYED OMS 1
BURN, POST OMS 2 BURN

• AOA AND AOA POST DEORB1T
PROCEDURES

• POWERED FLIGHT AND
ABORT CUE CARDS

• PRELAUNCH SWITCH
CONFIGURATION LIST

Post Insertion Checklist JSC-DH4 • SUMMARY AND DETAILED
TIMELINES AND
PROCEDURES TO PREPARE

ORBITER, CREW, AND
PAYLOAD FOR ON-ORBIT OPS

• ON-ORBIT SWITCH
PICTORIALS

• ATO POST INSERTION
INSTRUCTIONS

Crew Activity Plan JSC-DH4 • INTEGRATED SUMMARY
T/MELINES

• DETAILED ON-ORBIT
NOMINAL AND
CONTINGENCY TIMELINES
INCLUDES KEY GROUND
SUPPORT, ORBITER
SYSTEMS, CREW SYSTEMS,
AND PAYLOAD SYSTEM
OPERATIONS

• CONSUMABLES CURVES

Deorbit Prep Checklist JSC-DH4 • NOMINAL DEORBIT PREP AND
DEORBIT PREP BACKOUT
PROCEDURES

• ENTRY SWITCH LIST
PICTORIALS

• LAUNCH DAY (ORBITS 2 AND
3) AND EMERGENCY DEORBIT
PROCEDURES

• BFS/SHORT TIME DEORBIT
PREP NOTES

• CONTINGENCY DELTAS TO
NOMINAL DEORBIT PREP
PROCEDURES

• NOMINAL AND
CONTINGENCY DEORBIT
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Table2-29FlightDataFile Articles (contd)

DOCUMENT TITLE ORGANIZATION CONTENTS

PREP PAYLOAD BAY
CLOSURE

Entry Checklist JSC-DH3 • PRE-DEORBIT BURN, POST
BURN DEORBIT AND POST
LANDING PROCEDURES
OMS PROPELLANT DELTA
PADS
DEORBIT BURN AND ENTRY
CUE CARDS

• 1-ORBIT LATE AND LOSS OF
FLASH EVAPORATOR
PROCEDURES

• SWITCH LIST AT WHEEL STOP

EVA Checklist JSC-DG3 • EVA EQUIPMENT, AIRLOCK &
CREW PREP PROCEDURES

• EVA PREP AND FAILED LEAK
CHECK PROCEDURES

• EVA CUFF CHECKLIST WITH
EVA CREWMAN PROCEDURES

• POST EVA AND ENTRY PREP
PROCEDURES

• EMU MAINTENANCE AND
PROCEDURES

• EMERGENCY AIRLOCK
REPRESSURIZATION

• EVA CUE CARDS

Orbit Operations Checklist JSC-DH4 • ORBITER SYSTEMS
PROCEDURES
FOR ON-ORBIT OPERATIONS

• PRE- AND POST-SLEEP
PROCEDURES

• FLIGHT-SPECIFIC DETAILED

TEST OBJECTIVE (DTO)
PROCEDURES

Payload Ops Checklist JSC-DH6 • PAYLOAD SYSTEMS
PROCEDURES FOR ON ORBIT
OPERATIONS

• NOMINAL, BACKUP, AND TIME
CRITICAL CONTINGENCY
PROCEDURES

PDRS Ops Checklist JSC-DH4 RaMS AND PAYLOAD

NOMINAL BACKUP, AND
CONTINGENCY

PROCEDURES/DATA FOR
POWERUP/POWERDOWN
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Table229 FlightDataFileArticles(contd)

DOCUMENTTITLE ORGANIZATION CONTENTS

CHECKOUT
DEPLOY/RETRIEVAL OPS

PROCEDURES FOR CCTV/RMS
INSPECTION
RMS EVA RELATED
PROCEDURES

Photo/TV Checklist

OFFNOMINAL:

JSC-DG3 • TELEVISION SETUP,
ACTIVATION, AND
DEACTIVATION PROCEDURES

• 16ram AND 70mm CAMERA
OPERATIONS

• 35ram CAMERA OPERATION,
PHOTO LIST, AND PHOTO LOG

• 16ram, 35ram, AND 70ram CAMERA
DISPLAYS AND CONTROLS

Payload Systems Data
and Malfunction Procedures JSC-DH6 • CRT DISPLAYS

• SYSTEMS SCHEMATICS
• MALFUNCTION DIAGNOSTIC

PROCEDURES
• SYSTEMS REFERENCE DATA:

FAULT DETECTION AND
ANNUNCIATION
SOFTWARE
IDENTIFICATION
CRITICAL EQUIPMENT/
BUSS/MDM LOSS LISTS

• PAYLOAD BAY CLOSEOUT
PHOTOGRAPHS

Systems Malfunction
Procedures

REFERENCE:

Data Processing
Systems Dictionary

JSC-DF4

JSC-DH4

ORBITER SYSTEMS
DIAGNOSTIC
PROCEDURES
FAILURE RECOVERY
PROCEDURES--
INTEGRATED PROCEDURES
TO RECONFIGURE SYSTEMS
AS A RESULT OF ELEMENT
FAILURE

LIST OF ALL CRT
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DOCUMENT TITLE

Reference Data Book

Table 2-29. Flight Data File Articles (contd)

ORGANIZATION CONTENTS

DISPLAYS AVAILABLE ON-
BOARD THE ORBITER
PROGRAM NOTES
EXPLAINING
SOFTWARE LIMITATIONS
AND CORRECTIVE ACTIONS

JSC-DH4 • LISTS OF CRITICAL

EQUIPMENT LOST
WHEN BUS OR SUB BUS IS
LOST

• LISTS OF I/O GPC
PARAMETERS LOST
WHEN MDM IS LOST

• LIST OF ALL FAULT
MESSAGES

• GPC MEMORY DATA
LOCATIONS

2.5.4.8 Flight.Control Documents. JSC will develop the many flight-specific handbooks and

manuals required by flight controllers to execute the mission. As with the FDF, the data for these

documents will be drawn from various integration activities including the PIP and annexes, trade

studies and analyses, working group results, and the milestone reviews previously discussed.

General Dynamics will monitor the development of flight control documents to ensure the mission

requirements continue to be satisfied.

Flight Rules Annex. The flight rules comprise the formal flight-specific document that defines

flight policies considering crew safety and mission objectives for various flight and system

contingencies. Preplarmed decisions are outlined to minimize the amount of real-time

rationalization required when off-nominal situations occur. The associated rationale defines

reasons, considerations, and tradeoffs considered in establishing recommended action. The flight

rules are developed by a Flight Techniques panel chaired by the Flight Director Office and

supported by the General Dynamics Space Flight Operations group. The preliminary flight rules

are published at six months before the beginning of integrated simulations. The basic rules are

published one month before simulations, and the final at L-1 month.

Operations Support Timeline. The OST is an integrated summary timeline identifying key activities of

the major mission-support elements. Referenced to mission elapsed time (MET), the OST provides

information on orbiter tracking and acquisition through to TDRSS, RTS, and GSTDN networks, orbit
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Figure 2-66. Flight Operations Requirements Development

When the operational requirements have been adequately defined, flight planning activities will

identify technical analyses and flight designs necessary to implement Reflector/Beam objectives

within the capabilities of the STS. This process examines the support necessary for flight, defines

event sequences and procedures, and culminates in the documentation required to achieve

Reflector/Beam mission objectives. The result is an established baseline for flight operations with an

assessment of STS capabilities for implementation. The planning function is detailed in Figure 2-67.
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2.5.5.2 Flight Readiness Preparation. Flight readiness activities assess ground testing and pre-

flight activities as well as the results of flight operations planning. The intent is to validate the FDF

and refine the operational procedures used by the flight crew and ground controllers. Validation is

accomplished through a planned series of simulations.

The activities needed to develop and implement requirements for NASA training and simulation

support are documented in PIP Annex 7. Implementation of training and simulation requirements is

the responsibility of the NASA/JSC training manager, and control and implementation of the

requirements are accomplished by the POWG.

A Reflector/Beam training plan will be developed to address all aspects of training, including

personnel to be trained (FOSP and flight crew), and where, how, and when training will be

accomplished. This plan will be the basis for preparing PIP Annex 7. The program defined by

this plan will be based on the building-block technique with progressive advances in complexity of

subject material and training aids, as shown in Figure 2-68.
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Figure 2-68. Mission Preparation Training Concept

2.5.5.3 Flight Control. Flight control analyses are performed during the integration process to

interpret requirements for command, control, communications, and real-time mission support, and to

allocate the requirements to the appropriate implementation agencies. Flight control support

requirements are derived from operations planning analyses performed with the requirements for

mission support at NASA/JSC and GSFC, and prelaunch support at KSC. The implementation

approach is documented in the mission-specific flight rules, flight control operations handbook

(FCOH), and the FDF. General Dynamics will represent the Reflector/Beam program to JSC and

KSC, and will respond to crew and operations support activities to ensure that the implementation

agencies understand and continue to satisfy the experiment requirements in the cargo-level flight

control documentation. The integration process culminates in real-time flight operations. Shortly

before launch, the Reflector/Beam control team will be responsible for manning consoles to provide

launch operations configuration status to the KSC test conductor and/or the flight director at JSC. At

launch, flight-specific operations will be conducted and monitored by the Reflector/Beam team based

on four sets of documents:
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• Final FDF

• Mission flight rules

• Console procedures

• Final CAP

This team will be responsible for monitoring on-orbit experiment checkout and operations, and

relaying status to MCC-H payload operations personnel from launch until Reflector/Beam sating

operations are completed.

2.6 PROGRAM SCHEDULE

A work breakdown structure (WBS) and master schedule for the reflector/beam verification

program are given in Figures 2-69 and 2-72, respectively. The baseline program lasts 7.5 years

(90 months) and contains two flights, one with a 5-meter reflector and the other with a 15-meter

reflector. Both flights use the same instrumented 20-meter truss-beam. The first flight occurs at

the end of the fifth year (month 60), and the second flight occurs midway in the seventh year

(month 79).

The program schedule is ambitious. It tightly integrates development testing, design and

fabrication of one truss-beam and two reflectors, substructure ground testing of the beam and each

reflector, final assembly and assembled-system ground testing of the two flight configurations,

STS safety reviews of both flight configurations, integration of both flight configurations into the

STS, both STS flights, and a full complement of pre- and post-flight analyses. A major challenge

in the schedule is overlaying all the integration and ground-testing tasks on flight-hardware

fabrication and assembly. Another challenge is overlaying the STS integration (operations WBS

element) and safety tasks on the rest of the program.

The schedule contains three critical design reviews (CDRs), one in month 14 for the beam, one

in month 18 for the 5-meter reflector and the assembled flight-one configuration, and one in

month 24 for the 15-meter reflector and the assembled flight-two, configuration. Holding the

beam CDR separately and before that for the entire flight-one configuration allows starting beam

fabrication earlier and, thereby, starting integration and testing earlier. This reduces the program

span from nearly 8 years to 7.5 years. All development testing is completed before the flight-

one CDR.

Beam fabrication starts immediately after the beam CDR, month 14, and final assembly is

completed in month 27. At the conclusion of beam final assembly, the beam is moved to an

integration facility for installation of its instrumentation and then to the ground-testing facilities
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for substructurestatic and vibration testing. Beam integration and testing starts in the month 28

and lasts into month 40. The beam is sent back to the final assembly area to await assembly

with the 5-meter reflector. Integration and testing of the 5-meter reflector begins in month 31

and is completed in month 42. Two months arc aUowcd for ffmal assembly of the reflector with

the beam and deploycr/rcpacker, and integration and testing of the flight-one configuration

begins in month 45. FinaUy, all flight-one configuration testing is completed during month 54,

the flight article is shipped to KSC for STS integration and flight during month 60.

Meanwhile, the 15-meter reflector assembly is completed in month 52. Intcgration and

substructure testing is performed between months 53 and 64. The beam is returned from the first

flight and integrated with the 15-meter reflector during months 65 and 66. Then, integration and

testing of the assembled 15-meter flight-two configuration is performed in months 67 through 75.

The flight-two article is shipped to KSC in month 75 and flown in month 79.
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2.7 FACILITY REQUIREMENTS

A major consideration in the program definition was facility requirements. To reduce program

costs and schedule, the goal was to use only existing government and industry facilities. As

discussed in Section 2.2.4, use of existing ground-test facilities, specifically, thermal vacuum

chamber and near-field facilities, limited the maximum diameter of the deployable geotmss reflector

to 15 meters. However, this is not a severe limitation in achieving the overall program goals.

Facility requirements for hardware fabrication, ground testing, and shuttle integration are shown in

Table 2-30. The period during which these facilities are needed is shown on the program master

schedule in Section 2.6. With the hardware and tests as defined, all program operations can be

done with existing facilities.

Table 2-30. Facilities

OPERATION FACILITY REQUIREMENT AVAILABLE FACILITES

HARDWARE COMPOSITES FABRICATION FACILITY GDSS

FAB/ASSYIINSPECT. ASSEMBLY FACILITY (CONTROLLED ENVIRONMENT)

MEASUREMENT FACILITY (CONTROLLED ENVIRONMENT)

DEPLOYMENT

TESTS (VACUUM)

VIBRATION/

DYNAMIC TESTS

THERMALNACUUM

TESTS

NEAR FIELD RF

MEASUREMENT

SHUTTLE INTEGRATION

65 FT DIA VACUUM CHAMBER

65 FT DIA VIBRATION TEST FACILITY

65 FT DIA THERMALNACUUM CHAMBER

50 FT DIA NEAR-FIELD FACILITY

PAYLOAD INTEGRATION FACILITY

JSC (CHAMBER B)

GDSS VIBRATION LAB

JSC (CHAMBER B)

MMC,. DENVER

KSC

ALL PROGRAM OPERATIONS CAN BE ACCOMPLISHED WITH EXISTING FACILITIES

2.8 PROGRAM COST ANALYSIS

Program cost analysis consisted of developing side-by-side cost data for six different antenna

system configurations. Costs were developed at the major subsystem level and include the design,

development, test and evaluation of prototype hardware and the production of one unit of

operational hardware.
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Program costs were developed for 5-meter and 15-meter antenna systems both with and without

on-orbit RF testing capability. These program costs are shown in Figure 2-71.as these six

different program options: 15 meter, 5 meter, combined 15 meter and 5 meter, 15 meter without

RF test capability, 5 meter without RF test capability and combined 15 meter and 5 meter without

RF test capability. The singular 15-meter and 5-meter antenna systems represent standalone

systems that would be developed for only one size antenna, i.e., 15 meter or 5 meter. The antenna

systems that combine.both a 15-meter and 5-meter antenna, both with and without RF test

capability, assume initial development and production of a 5-meter antenna system. This system is

subsequently upgraded by development and production of hardware that will convert the initial 5-

meter design to a 15-meter system. The cost difference between a single experiment using the 5-

meter reflector and two experiments using both a 5-meter and 15-meter reflector is only $31.7

million (with RF testing) and $30.2 million (without RF testing). This low cost difference is due

to the extensive use of common designs and the reuse of all experiment hardware except the

reflector.

300 T
| 244 251.2

250 "t"| _ 219.5 _ 2119

1 1.1j / '""

t / ld _B 15_777_ 321_ 151

COST 150 1
(FY'S7M$)

100

5O

0

15 M 5 M 15M+5M 15M(-RF) 5M(-RF) 15+5(-RF)

lIB FIRST UNIT II DDT&E [] TOTAL PROGRAM I

Figure 2-71. Program Cost Summary

2.8.1 COST RESULTS. Total program costs, which represent the sum of design, development,

test and evaluation (DDT&E) and one production article, vary from $181.7 million for a standalone

5-meter antenna system without RF capability to $251.2 million for a combined 15-meter and 5-

meter antenna system with near-field RF testing capability.

2-140



Developmentcosts,which includedesign,development,testandevaluation,vary from$132.6

million for thestandalone5-meterantennasystemwithoutnear-fieldRFcapabilityto $181.8
million for thecombined15-meterand5-meterantennasystemwithRFtestingcapability.First-
unit costfor the5-meterantennasystemwithoutRFis $49.1million comparedwith $69.4million

for thecombined5- and15-metersystemwithon-orbitRFtestingability. Programcosts,broken
downtothemajorfunctionalsubsystemlevel,areshownfor the5-meterand15-meterantenna

systemswith RFcapabilityin Table2-31. Similarfunctionalsubsystem-levelcostdatais shown

inTable2-32for thoseantennasystemswithoutRFtestingability.

2.8.2COST DEVELOPMENT AND ANALYSIS. Development costs, unit production costs, and

program costs for the various antenna system options were developed using the general

methodology outlined in Figure 2-72. The input data, which includes cost of ground rules, a cost

database within a functional subsystem work breakdown structure and design, development, and

operations definition data for a given system are used to develop and drive a cost model. This cost

model develops first-unit production costs and program costs for selected system configurations.

Ground rules and assumptions that apply to this study are as follows:

• All costs in FY 1987 millions of dollars.

• Program costs are for 15-meter and 5-meter antenna systems both with and without on-orbit

testing capability.

• Includes reflector, support beam, deployment structure, mechanism, power distribution, antenna

measurement, control and instrumentation systems, ground support equipment, software, program

integration, and RF avionics where appropriate.

• Excludes STEP dedicated support pallet and Space Shuttle associated costs.

• Costs are identified for DDT&E and a single unit production article (f'n-st unit) for each of four

independent program options. In addition, program delta costs are identified for growth to 15-

meter capability from initial 5-meter system development.

• Ground support equipment includes both general-purpose and special support equipment. It

consists of electrical, electronic, and mechanical hardware and software.

• All cost data includes direct and indirect costs including general and administrative (G&A) costs

and a contractor fee of 12%.

Cost estimates for fast-unit production cost and DDT&E were developed at the major subsystem

level. The basis for these costs is statistically derived cost estimating relationships (CERs) that

were developed at the major functional subsystem level. Each subsystem element represents a

specific type of hardware with a level of cost determined by a combination of subsystem size and

complexity. The database for these CERs is composed of unmanned spacecraft subsystems and
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orbital antenna hardware elements. In addition, reasonability checks based on top-level parametric

relationships and ratios were made to ensure comparability and consistency among the subsystem

elements.

Table 2-31. Program Cost Elements (Including RF Testing)

SPACE ANTENNA (FY'87M$)

1 REFLECTOR

2 EXCIT. DAMP. (EDS)
3 DEPLOY. MECHANISM

4 MOTION MEAS. (MMS)
5 MOD.DIST.INSTRU.(MDIS)
6 BEAM STRUCTURE
7 RF AVIONICS

8 FIGURE CONTROL (FCS)
9 POWER DISTRIB. (PDS)

15 METER
FIRST UNIT

4
13.3

4.7
11.9

1.4
1

11.3
2.2
1.4

15 METER
DDT&E

17.7
16.6
25.8
15.3

3.4
6.9

14.8
4.8
3.4

5 METER 5 METER
FIRST UNIT

1.3
13.3

4.7
11.9

1.4
1

10.8
2.2
1.1

DDT&E
5.9

16.6
25.8
15.3

3.4
6.9

14.4
4.8
2.9

10 PROGRAM INTEG.
11 GSE
12 SOFTWARE
TOTALS
TOTAL PROGRAM

16.9 38.9
24.8

3.5
68.1 175.9

244

15.8

63.5

34.2
22.3

3.5
156

219.5

The major structural subsystems are the reflector and supporting beam. The major difference

between the 15-meter and 5-meter system is the reflector. The beam structure can be used to

deploy either antenna and is considered common to either system in terms of cost. The

deployment mechanism also is common from a cost point of view with the ability to deploy both

the 15- and 5-meter antenna.

The high production cost subsystems are the excitation damping system (EDS), motion

measurement system (MMS), and RF avionics where applicable. From a development point of

view, the deployment mechanism, EDS, MMS, RF avionics, and ground support equipment

represent significant cost areas. Program integration is a significant cost element for both the

development and fh'st-unit cost of all the configurations. Program integration includes program

management, systems engineering, systems test and evaluation, acceptance test, quality assurance,

data management, and integration and assembly.
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Table 2-32. Program Cost Elements (Without RF Testing)

SPACEANTENNA(FY'87M_.M_$]

IREFLECTOR

2 EXCIT. DAMP. (EDS)
3.DEPLOY. MECHANISM
4 MOTION MEAS. (MMS)
5 MOD.DIST.INSTRU.(MDIS)

15 METER-RF
FIRST UNIT

13.3
4.7

11.9
1.4

1

15 METER-RF
DDT&E

17.7
16.6
25.8

5 METER-RF
FIRST UNIT

1.3
13.3

4.7

5 METER-RF
DDT&E

5.9
16.6
25.8

15.3 11.9 15.3

3.4 1.4 3.4
16BEAM STRUCTURE 6.9 6.9

7 RF AVIONICS
2.2 4.8 2.2 4.8

3.4 1.1 2.9
29.112.233.5

2,0.8

1.4
13.1

8 FIGURE CONTROL (FCS)
9 POWER.DISTRIB. (PDS)
10 PROGRAM INTEG.
11 GSE

L.12SOFTWARE

18.4

3.5 3.5
ITOTALS 53 151.7 49.1 132.6

TOTALPROGRAM 204.7 181.7
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Figure 2-72. Cost Analysis Procedure
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SECTION3

CONCLUSIONSAND RECOMMENDATIONS

This section presents the major conclusions and recommendations.

3.1 CONCLUSIONS

• Future advanced space structures will be large and have high performance.

• Deployment, shape accuracy, and control/structure interaction are critical advanced technologies

for deployable truss structures.

• The planned precision deployable truss beam and truss reflector test structures and

analysis/ground test/flight experiment program are designed to verify these advanced technologies.

• Critical technologies requiring further development are shape control and truss reflector

deployment mechanization.

• The flight experiment objectives can be met using two shuttle flights with the total experiment

integration on a single step and MPESS.

• First flight of the experiment can be achieved 60 months after program go-ahead with a total

program of 90 months.

• Total baseline program can be accomplished for an estimated $251 million with RF experiments,

and $212 million without RF experiments.

3.2 RECOMMENDATIONS

• Initiate immediate technology development programs for :

-- Shape control (sending, actuation, system integration)

-- Truss reflector controlled deployment (mechanisms, system demonstration)

• Initiate an early thermal distortion analysis/ground test program:

-- Use existing deployable tress hardware

-- Thermal distortion analysis (mass and reflector)

-- Ground test verification

• Initiate a study of flight experiment operations

• Continue overall program planning

-- Cost

-- Schedule

-- Program participation

• Initiate overall program by FY 1989

-- Technology development compatibility

-- Funding availability

-- User need dates

3-1



SECTION 4
REFERENCES

1. NASA TM 88176, "NASA Space Systems Technology Model," Sixth Edition, June 1985.

2. A.F. Technology Center Repoort AFSTC-TR-84-4, "Military Space Systems Technology

Plan," January 1985.

3. K. Soosar, "Precision Space Structures," NASA Conference Publication 2368, pp. 349-359,

1985.

4. D.C. Schwab, S.J. Wang, and C.C.Ih, "large Space Structure Hight Experiment," JPL

Publication 85-29, Vol. 1, pp. 345-381 (Proceedings of the Workshop on Identification and

Control of Flexible Space Structure_, June 4-6, 1984, San Diego, California).

5. F.M. Ham and D.C. Hyland, "Vibration Control Experiment Design for the 15-M

Hoop/Column Antenna, JPL Publication 85-29, Vol. 1, pp. 229-251.

6. S.J. Wang, Y.H. Lin, and C.C. Ih, "Dynamics and Control of a Shuttle-Attached Antenna

Experiment," Journal of Guidance, Control, and Dynamics, Vol. 8, No. 3, May - June 1985, pp.

344-353.

7. J.G. Bodle, et all, "Space Construction Experiment Definition Study Part HI," Final Report,

Vol. I1, NASA CR-171660, March 1983.

8. H. Hill, D. Johnston, and H. Frauenberger, "Development of the Lens Antenna Deployment

Demonstration (LADD) Shuttle Attached Hight Experiment," NASA CP-2447, Part I, November

1986, pp. 125-144 (Proceedings of the 1st NA SA/DOD Control Structures Interaction Technology

Conference, Norfolk, Virginia, November 18-21, 1986).

9. W.K. Belvin and H.H. Edighoffer, "15-Meter Hoop-Column Antenna Dynamics: Test and

Analysis," NASA CP-2447, Part I, November 1986, pp. 167-185.

10. R.C. Talcott and J.W. Shipley, "Description of the MAST Flight System," NASA CP-2447,

Part I, November 1986, pp. 253-263.

4-1



11.D.C. Lenzi and J.W. Shipley, "MAST Hight System Beam Structure and Beam Structural

Performance," NASA CP-2447, Part I, November 1986, pp. 265-279.

12. L. Davis, D. Hyland, T. Otien, and F. Ham, "MAST Flight System Dynamic Performance,"

NASA CP-2447, Part I, November 1986, pp. 281-298.

13. M.L. Brumfield, "MAST Flight System Operations," NASA CP 2447, Part I, November

1986, pp. 299-317.

14. J.S. Pyle and R.C. Montgomery, "COFS-II 3-D Dynamics and Controls Technology," NASA

CP-2447, Part I, November 1986, pp. 327-345.

15. L.G. Horta, J.L. Walsh, G.C. Homer, and J.P. Bailey, "Analysis and Simulation of the

MAST (COFS-I Flight Hardware), "NASA CP-2447, Part I, November 1986, pp. 515-532.

16. E.D. Pinson, "Damping Characteristics of the Solar Array Flight Experiment," AFWAL-TR-

86-3059, Vol. 2, May 1986, pp. DC-1 to DC-26 (Damping 1986 Proceedings, Las Vegas,

Nevada, 5-7 March 1986).

17. G.A. Lesieutre, "Support of the Deployable Truss Advanced Technology Verification

Program, Task 2-Systems Analysis Support," SPARTA Report No. URL-7-X-013, July 31,

1987.

18. N.M. Nerheim and R.P. DePaula, "Sensor Technology for Advanced Space Missions,"

presented at the First NASA/DOD CSI Technology Conference, Norfolk, Virginia, November 18-

21, 1986.

4-2



ng SA Report Documentation Page

Reoort No

NASA CR-181703

2 Government Accession No.

T,tle an0 SuOt_t)e

Development of a Verification Program for

Deployab]e Truss Advanced Technology

7 Autnor(sl

Jack E. Dyer

9. Pe#Ormang Organ0zatlon Name ano AOore_

Genera] Dynamics

Space Systems Division
P. O. Box 85990

San Die_o, CA 92138
12. S_n_rmg A_ncy Name and AOOress
Nationa] Aeronautics and Space Administration

Lang]ey Research Center
Hampton, VA 23665-5225

3 RecJo_ent s Cataloq No

5 Reoon Oate

September 1988

6 Pertorrnmg Organlzat=on Coae

8 Perform0ng Organ,zat=on Reoon No

10 WOrK Un=t NO

=

Contract or Grant No.

NAS I-18274

13. TVI:e of Rel=ort and Pefma Covered

Contractor Report

14. S_ons_rmg _germv Code

15. Sulm+ementaP¢ Not=

Langley Technical Monitor:
Final Report

U. M. Lovelace
C F;",::_"':__, ::',:;7 ,t';

I
16. &lNtract u

Use of large deployablespace structuresto satisfy the growth demandsof space systems is contin-
gent upon reducingthe associatedrisks that pervade many related technicaldiciplines. NASA has
recognizedthis issue and has sponsoredsignificantresearchaimed at developing the needed large
space structurestechnology.

The overall objectivesof this program,which uses the productsof these researchefforts, was to
developa detailed plan to verifydeployable truss advanced technology applicable to future large

space structuresand to developa preliminarydesign of a deployabletruss reflector/beamstruc-
ture for use as a technologydemonstrationtest article. The planning is based on a Shuttle flight
experimentprogram using deployable5 meter and 15 meter aperturetatrahedraltruss reflections
and a 20 meter long deployabletruss beam structure.

The plan addressesvalidationof analyticalmethods, the degreeto which ground testing adequately
simulatesflight testingand the in-spacetesting requirementsfor large precisionantenna designs

Based on an assessment of future NASAand DODspace system requirements, the program was designed
to verifyfour critical technology areas: 1) deployment,Z) shape accuracy and control,3)pointinB
and alignment,and 4) articulationand maneuvers. The flight ex=eriment technology verification
objectivescan be met using two shuttle flightswith the total experimentintegratedon a
singleShuttleTest ExperimentPlatform (Sl=E;iand a Mission Peculiar ExperimentSupport Structure
(MPESS).First flightof the experimentcan be achieved 60 months after go-aheadwith a total pro-
gram durationof 90 months.

T_. Key Wor_ (Suggested by Author(s))

deployable truss structures, antenna
systems, space systems, shuttle
experiments

18. Omtn_tmn Statement

Unclassified-Unlimited

Subject Category 18

19,socunwClasm#.(of_m rooort! T2o.Secur_ClaiR,(oft_mI_! [21.NO.ofI_ T22.I%¢.

Unclassified Unclassified 148 I

NASA FORM IIBI OCT gg



PREPARATION OF THE REPORT DOCUMENTATION PAGE

The last page of a report facing the third cover is the Report Oocumentat¢on Page. RDP Information presente_ on thts

page Js used an announcing and cataloging reports as well as preparing the cover and t_tle Page. Thus _t _s amportant
that the tnformation be correct. Instructions for filling nn eacn block of the form are as follows:

Block 1. Report No. NASA report ser,es numOer. ,f

preass=gnecl.

Block 2. Government Accession No. Leave plank.

Block 3. Reciooents Catalog No Reservea for use by each

report rec;Dient.

Block 4. Title and Subtmtle. Typed in cads ancl lower case

wath clasn or oerfod separating SuE)title from t=tle.

Block 5. Report Date. Approxmmate montt_ and year the
report wtll be published.

Block 6. Performing Organization Code. Leave blank.

Block 7. Author(s). Provide full names exactly as they are

to appear on the title page. If apphcaDle, the wora editor
should follow a name.

Block 8. Performing Organization Report No. NASA in-
staUatmon report control number and, if desired, the non-

NASA performing organization report control number.

Block g. Performing Organization Name and Address. Pro-
vide affiiiatmn (NASA program office, NASA anstailatnon,
or contractor name) of authors.

Block 10. Work Unit No. Provide Research and

Technology Oblectives and Plans (RTOP) number.

Block 11. Contract or Grant No. Provide when applicable.

Block 12. Sponsoring Agency Name and Address.

National Aeronautics and Space Administration, Washing-

ton, D.C. 20546-0001. If contractor report, add NASA in-

stallation or HQ program office.

Block 13. Type of Report and Period Covered. NASA for-
mal report series; for Contractor Report also list type (in-

terum, final) and period covered when applicable.

Block 14. Sponsoring Agency Code. Leave blank.

Block 15. Supplementary Notes. Information not included
elsewhere: affiliation of authors if additional space is re-

._u_recl for !olocK 9. notice of work sponsorecl OV another

agency, ?nonmtor of contract, _nformat_on about suP-

plements =film. data tapes, etc. I. meeting site and date for

_resented rJapers, journaJ to which an article has I:een sub-

rn=tteCl, note of a report macle from a thesis, appendix by
autt_or Diner than shown _n block 7

Block 16. Abstract. The abstract should be anformative

ratner than descrtptive and should state the oblectwes of

the _nvestngatnon, the methods employed (e.g., simulation,
experiment, or remote sensmg}, the results obtamecl, and
the conclusions reached.

Block 17. Key Words. Identifying words or phrases to be

usecl _n cataloging the report.

Block 18. Distnbution Statement. Indicate whether report
cs available to public or not. If not to be controlled, use

"Unclassified-Unlimited." If controlled availability is re-

Clulred, list the category approved on the Document

Availability Authorization Form (see NHB 2200.2, Form

FF427). Also specify subject category (see "Table of Con-

tents" in a current issue of STAR), in which report is to
be distributed.

Block 19. Security Classification (of this report).
Self-explanatory.

Block 20. Security Classification (of this page).
Self-explanatory.

Block 21. No. of Pages. Count front matter pages begin-

n,ng wath _i0, text pages _ncluding internal blank pages, and

the RDP, but not the title page or the back of the title page.

Block 22. Price Code. If block 18 shows "Unclassified-

Unlimited," prowde the NTIS price code (see "NTIS Price

Schedules" in a current issue of STAR) and at the bot-

tom of the form adcl either "For-"'_'_ by the National

Technical Information Service, Springfield, VA

22161-2171" or "For sale by the Superintendent of

Documents, U.S. Government Printing Office,,

Washington, DC 20402-0001," whichever is appropriate.




